Tornado and Windstorm Damage Assessment

Rainer Kaltenberger

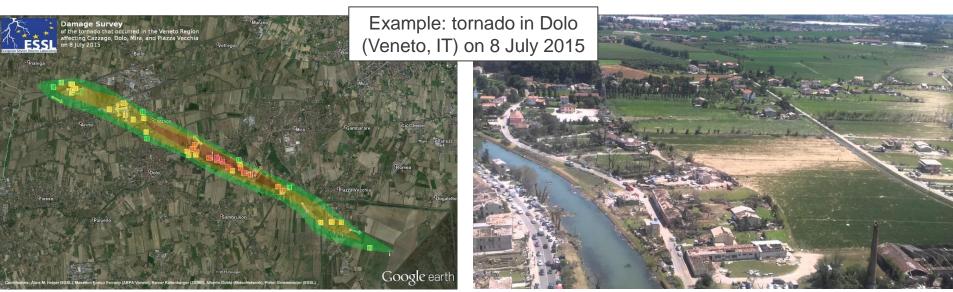
EUMeTrain Wind Event Week – March 1st, 2022

Contents

EUMeTrain Wind Event Week R. Kaltenberger

> 01.03.2022 Slide 2

- Tornado and Windstorm Damage Assessment
 - Motivation
 - Wind Damage Scales
 - The Damage Indicator Degree of Damange -Method
 - Tornado or Downburst
- Case studies
 - F4-Tornado Mira/Dolo (VE), Italy, July 8th, 2015
 - F1-Squall line Frauschereck, Upper Austria, August 18th, 2017
 - F2-Tornado near Vienna Int. Airport, July 10th, 2017
- Practical guidance
- Literature


Tornado and Windstorm Damage Assessment


Damage Assessments (1/15)

EUMeTrain Wind Event Week R. Kaltenberger/G. Pistotnik 01.03.2022 Slide 4

Tornados: Challenges

- Rare events, but potentially extreme impact
- Small scale and (usually) short-lived
- Forecasts and warnings are very difficult!
- Usually no direct wind speed measurements => ex post intensity rating via damage assessment

Damage Assessments (2/15)

EUMeTrain Wind Event Week

R. Kaltenberger 01.03.2022 Slide 5

Convective wind gusts: Challenges

- Wind gusts, which occur in connection with convective showers or thunderstorms (also: downbursts, squalllines, (nontornadic, damaging) straight line winds)
- Often small scale, sometimes very suddenly and only for a short time
- Squall lines due to organized thunderstorms/bow echoes/derechos are responsible for most windstorm-related damages (and victims!) in Central Europe in summer season
 - Sudden acceleration of wind speed to gale force or hurricane strenght, sometimes within 20 seconds!

 Squall lines have the potential to "rush ahead" thunderstorm cells, especially at the edges of mountainous terrain (e.g. northern side of Alps)

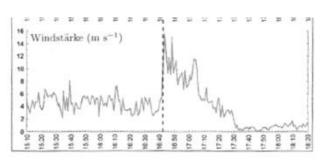


Abb. 8.14. Messungen von Temperatur, Taupunkt, Druck und Wind am Meteorologischen Institut der Universität Bonn vom 14, 7, 2010

© Lisa Penz/Mein Bezirk.at

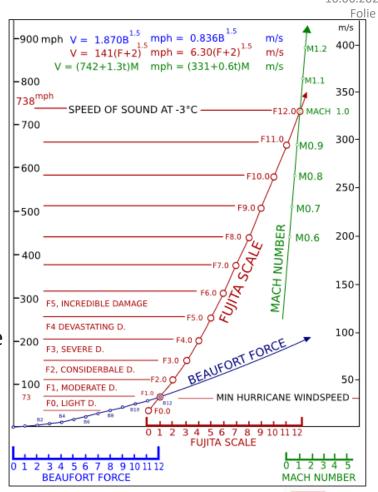
Bott, A. (2016). Synoptische Meteorologie: Methoden der Wetteranalyse und-prognose. Springer-Verlag.

Damage Assessments (3/15)

Motivation: Why damage assessments?

UMeTrain Wind Event Week R. Kaltenberger/G. Pistotnik 01.03.2022 Slide 6

- Tornados and downbursts are small scale and short lived phenomena → mostly no in situ measurements are available
- Squall lines usually have local maxima of windgusts, which are not covered by weather stations
- Climatology
 - Knowledge of tornado and downburst events as basis for risk assessments
 - Understanding of regional effects (e.g. acceleration of gust fronts at the Northern edge of the Alps)
- Process understanding: under which conditions do tornadoes or damaging straight line winds occur?
- Forensic meteorology: Expert opinion for courts' or prosecutor's offices (e.g. liability, negligence), insurances...
- Public relations
- Impact-based warnings
 - E.g. identification of weather situations or radar signatures connected with past tornadoes


Damage Assessments (4/15)

R. Kalter

Fujita Scale (F Scale)

- Tetsuya (Ted) Fujita, University of Chicago, USA
- Implemented in 1973 in the USA
- Upward extension of Beaufort scale
- Links damages to most likely wind speeds
- Today in use in Europa except for UK (TORRO scale instead)

© Wikipedia

Damage Assessments (5/15)

The same of the sa

Fujita Scale (F Scale)

EUMeTrain Wind Event Week R. Kaltenberger 01.03.2022 Slide 8

Scale	Wind speed estimate ^[6]		Path width ^[7]	Potential damage ^[6]	
Scale	mph	km/h	ratii widiii -	Potential damage.	
F0	40–72	64–116	6–17 yards (5.5–15.5 m)	Light damage. Some damage to chimneys; branches broken off trees; shallow-rooted trees pushed over; sign boards damaged.	
F1	73–112	117–180	18–55 yards (16–50 m)	Moderate damage. The lower limit is the beginning of hurricane wind speed; peels surface off roofs; mobile homes pushed off foundations or overturned; moving vehicles pushed off the roads; attached garages may be destroyed.	
F2	113–157	181–253	56–175 yards (51–160 m)	Significant damage. Roofs torn off frame houses; mobile homes demolished; boxcars overturned; large trees snapped or uprooted; highrise windows broken and blown in; light-object missiles generated.	
F3	158–206	254–332	176–566 yards (161–518 m)	Severe damage. Roofs and some walls torn off well-constructed houses; trains overturned; most trees in forest uprooted; heavy cars lifted off the ground and thrown.	
F4	207–260	333–418	0.3–0.9 miles (0.48–1.45 km)	Devastating damage. Well-constructed houses leveled; structures with weak foundations blown away some distance; cars thrown and large missiles generated.	
F5	261–318	419–512	1.0–3.1 miles (1.6–5.0 km)	Incredible damage. Strong frame houses lifted off foundations and carried considerable distances to disintegrate; automobile sized missiles fly through the air farther than 100 meters (110 yards); trees debarked; steel reinforced concrete structures badly damaged and skyscrapers toppled	

© Wikipedia

Damage Assessments (6/15)

Fujita Scale vs. Torro Scale

EUMeTrain Wind Event Week R. Kaltenberger 01.03.2022 Slide 9

		Unterk	critisch		Schwach				
		(Sub-c	ritical)		(Weak)				
Fujita	F-2		F	F-1		F0		FI	
TORRO	T-4	T-3	T-2	T -1	ТО	T1	T2	Т3	
Beaufort	B0, B1	B2, B3	B4, B5	B6, B7	B8, B9	B10, B11	B12, B13	в14, В15	
$v~{\rm in}~{\rm m}{\rm s}^{-1}$	0-3 3-7		7 – 12	12 – 18	18 - 25	25 - 33	33 – 42	42 - 51	
v in km h^{-1}	0-11	11 - 25	25 – 43	43 – 65	65 – 90	90 – 119	119 – 151	151 – 184	
Δv in m $\rm s^{-1}$	3	4	5	6	7	8	9	9	
\bar{S} in %	0.0	0.0	0.0	0.01	0.05	0.10	0.25	0.80	
\bar{S}_+ in %	0.0	0.0	0.0	0.0	0.01	0.05	0.10	0.25	

Signifikant
(Significant)

		Sta	ark		Verheerend				
	(Strong)				(Violent)				
Fujita	F	2	F	3	F	F4		F5	
TORRO	T4	T5	Т6	T7	Т8	Т9	T10	T11	
Beaufort	B16, B17	B18, B19	B20, B21	B22, B23	B24, B25	B26, B27	B28, B29	B30, B31	
$v {\rm in} {\rm m} {\rm s}^{-1}$	51 – 61	61 - 71	71 – 82	82 - 93	93 – 105	105 - 117	117 – 130	130 – 143	
v in ${\rm km}{\rm h}^{-1}$	184 – 220	220 - 256	256 – 295	295 - 335	335 – 378	378 - 421	421 – 468	468 - 515	
$\Delta v \mathrm{in} \mathrm{m s^{-1}}$	10	10	11	11	12	12	13	13	
\bar{S} in %	3.0	10.0	30.0	90.0	100	100	100	100	
\bar{S}_+ in %	0.80	3.0	10.0	10.0 30.0		80.0	90.0	95.0	

FIG. 1: Overview of the F- and T-scale, the related wind speeds, and typical loss ratios S for light (S-) and strong (S+) buildings in Central Europe.

- Fujita Scale (F Scale, Fujita 1971) F0-F5 (F6) levels
- Torro Scala (T Scale, Meaden 1976) –
 T1-T10(T11), based on windspeed
- Torro Scala double as fine as Fujita Scale
- Central European Practice "Lower"- or "Upper" F classes
- Example: F1- corresponds to T2 (119-151 km/h)

Feuerstein, B., Dirksen, E., Dotzek, N., Groenemeijer, P., Holzer, A. M., Hubrig, M., & Rauch, E. (2009, October). An illustrated verbal description of the TORRO and Fujita scales adapted for Central Europe considering building structure and vegetation characteristics. Preprints. In *5th European Conference on Severe Storms, Landshut, Germany* (pp. 357-358).

Dotzek, N. (2009). Derivation of physically motivated wind speed scales. *Atmospheric Research*, *93*(1), 564-574.

Damage Assessments (7/15)

R. Kaltenberger/G. Pistotnik 01.03.2022 Slide 10

Enhanced Fujita Scale (EF Scale)

- Wind Science and Engineering Research Center, Texas Tech University, 2004
- Concept of "Damage indicator" (DI) and "Degree of Damage" (DoD) to account for different building standards and include vegetation damages, "correction" of F Scale windspeeds
- EF Scale in use only in USA (since 2007) and Canada (since 2013)
- Criticism:
 - Technically designed to U.S. building standards
 - → Hardly representative for European construction methods / building standards
 - DIs for vegetation only very rudimentary ("hardwood" vs. "softwood")
 - Mobile Doppler radar measurements do not necessarily confirm EF Scale

	Fujita Scale	Enh	anced Fujita Scale*	
F-0	40-72 mph winds	EF-0	65-85 mph winds	
F-1	73–112 mph	EF-1	86-110 mph	
F-2	113-157 mph	EF-2	111–135 mph	
F-3	158-206 mph	EF-3	136-165 mph	
F-4	207-260 mph	EF-4	166-200 mph	
F-5	261-318 mph	EF-5	>200 mph	

© Texas Geographical Society

Damage Assessments (8/15)

Towards an International Fujita Scale (IF Scale)

UMeTrain Wind Event Week R. Kaltenberger/G. Pistotnik 01.03.2022 Slide 11

- Practice in Europe (ESSL, some National Weather Services):
 - Concept of DI and DoD adopted
 - DIs generalized for European building standards and vegetation
 - But: Rating still in F classes, not EF classes
 - F classes represent "most probable" range of wind gusts
- USA: Working group on redesign of EF Scale (with involvement of ESSL)
- Japan: "Japanese Enhanced Fujita Scale" (JEF Scale)
- ESSL: International Fujita Scale (IF Scale)
 - Damage Indicators internationally applicable, taking account building codes of different regions
 - Practice-oriented Contains flowcharts for damage assessments
 - Draft available at https://www.essl.org/cms/international-fujita-scale/
- Recommended practice for Central Europe to assess tornado-/windstorm-related damage: Fujita-(Torro)-Skala

Damage Assessments (9/15)

EUMeTrain Wind Event Week

R. Kaltenberger 01.03.2022 Slide 12

DI-DoD method: Adaptation of "Damage Indicators" for Europe

Part 1: Buildings

	Fujita damage class	f0	f1	f2	f3	f4	f5
	loss ratio (%)	0.1	1	10	50	90	100
	degree of damage	light roof damage	significant roof damage	roof gone	walls partly collapsed	largely blown down	blown away
А	weakest outbuilding	F0+	F0+	F1-	F1-	F1+	F2-
В	outbuilding	F0+	F1-	F1+	F2-	F2+	F3-
С	strong outbuilding/ weak framehouse	F0+	F1+	F2-	F3-	F3+	F4-
D	weak brick structure/ strong framehouse	F1-	F1+	F2+	F3+	F4-	F5
E	strong brick structure	F1-	F2-	F3-	F4-	F5	F5
F	concrete building	F1-	F2+	F3+	F4+	F5	F5

- A ... like a doghouse or unanchored light outbuildings
- B ... like huts and barns, anchored light outbuildings
- C ... like the typical US-midwest framehouses, if weakly anchored/connected to the foundation
- D ... like the typical US-midwest framehouses, if well anchored and connected. I Europe typically single-row brick strucktures (mainly 2-dimensional single-row brick walls like garden walls fall into B or C). This category best corresponds to the original Fujita-scale.
- E ... the typical central European masonry house
- F... steel-reinforced concrete buildings. Some historic fort-like buildings (castles) and some Mediterranean-style buildings in wind-prone-areas (like in Dalmatia) also fall into this category with their extremely thick stone-walls (if well-built and kept renovated).

© ESSL

Damage Assessments (9/15)

and the same of th

EUMeTrain Wind Event Week

R. Kaltenberger 01.03.2022 Slide 13

DI-DoD method: Adaptation of "Damage Indicators" for Europe

Part 1: Buildings

	Fujita damage class	f0	f1	f2	f3	f4	f5
	loss ratio (%)	0.1	1	10	50	90	100
	degree of damage	light roof damage	significant roof damage	roof gone	walls partly collapsed	largely blown down	blown away
А	weakest outbuilding	F0+	F0+	F1-	F1-	F1+	F2-
В	outbuilding	F0+	F1-	F1+	F2-	F2+	F3-
С	strong outbuilding/ weak framehouse	F0+	F1+	F2-	F3-	F3+	F4-
D	weak brick structure/ strong framehouse	F1-	F1+	F2+	F3+	F4-	F5
E	strong brick structure	F1-	F2-	F3-	F4-	F5	F5
F	concrete building	F1-	F2+	F3+	F4+	F5	F5

- A ... like a doghouse or unanchored light outbuildings
- B ... like huts and barns, anchored light outbuildings
- C... like the typical US-midwest framehouses, if weakly anchored/connected to the foundation
- D ... like the typical US-midwest framehouses, if well anchored and connected. I Europe typically single-row brick strucktures (mainly 2-dimensional single-row brick walls like garden walls fall into B or C). This category best corresponds to the original Fujita-scale.
- E ... the typical central European masonry house
- F... steel-reinforced concrete buildings. Some historic fort-like buildings (castles) and some Mediterranean-style buildings in wind-prone-areas (like in Dalmatia) also fall into this category with their extremely thick stone-walls (if well-built and kept renovated).

Damage Assessments (9/15)

EUMeTrain Wind Event Week

R. Kaltenberger 01.03.2022 Slide 14

DI-DoD method: Adaptation of "Damage Indicators" for Europe

Part 1: Buildings

	Fujita damage class		f1	f2	f3	f4	f5
	loss ratio (%)	0.1	1	10	50	90	100
	degree of damage	light roof damage	significant roof damage	roof gone	walls partly collapsed	largely blown down	blown away
Α	weakest outbuilding	F0+	F0+	F1-	F1-	F1+	F2-
В	outbuilding	F0+	F1-	F1+	F2-	F2+	F3-
С	strong outbuilding/ weak framehouse	F0+	F1+	F2-	F3-	F3+	F4-
D	weak brick structure/ strong framehouse	F1-	F1+	F2+	F3+	F4-	F5
E	strong brick structure	F1-	F2-	F3-	F4-	F5	F5
F	concrete building	F1-	F2+	F3+	F4+	F5	F5

- A ... like a doghouse or unanchored light outbuildings
- B ... like huts and barns, anchored light outbuildings
- C... like the typical US-midwest framehouses, if weakly anchored/connected to the foundation
- D... like the typical US-midwest framehouses, if well anchored and connected. I Europe typically single-row brick strucktures (mainly 2-dimensional single-row brick walls like garden walls fall into B or C). This category best corresponds to the original Fujita-scale.
- E ... the typical central European masonry house
- F... steel-reinforced concrete buildings. Some historic fort-like buildings (castles) and some Mediterranean-style buildings in wind-prone-areas (like in Dalmatia) also fall into this category with their extremely thick stone-walls (if well-built and kept renovated).

Damage Assessments (10/15)

The state of the s

EUMeTrain Wind Event Week

R. Kaltenberger 01.03.2022 Slide 15

DI-DoD method: Adaptation of "Damage Indicators" for Europe

Part 1: Buildings

	Fujita damage class	f0	f1	f2	f3	f4	f5
	loss ratio (%)	0.1	1	10	50	90	100
	degree of damage	light roof damage	significant roof damage	roof gone	walls partly collapsed	largely blown down	blown away
А	weakest outbuilding	F0+	F0+	F1-	F1-	F1+	F2-
В	outbuilding	F0+	F1-	F1+	F2-	F2+	F3-
С	strong outbuilding/ weak framehouse	F0+	F1+	F2-	F3-	F3+	F4-
D	weak brick structure/ strong framehouse	F1-	F1+	F2+	F3+	F4-	F5
E	strong brick structure	F1-	F2-	F3-	F4-	F5	F5
F	concrete building	F1-	F2+	F3+	F4+	F5	F5

- A ... like a doghouse or unanchored light outbuildings
- B ... like huts and barns, anchored light outbuildings
- C... like the typical US-midwest framehouses, if weakly anchored/connected to the foundation
- D... like the typical US-midwest framehouses, if well anchored and connected. I Europe typically single-row brick strucktures (mainly 2-dimensional single-row brick walls like garden walls fall into B or C). This category best corresponds to the original Fujita-scale.
- E ... the typical central European masonry house
- F ... steel-reinforced concrete buildings. Some historic fort-like buildings (castles) and some Mediterranean-style buildings in wind-prone-areas (like in Dalmatia) also fall into this category with their extremely thick stone-walls (if well-built and kept renovated).

Damage Assessments (10/15)

The state of the s

EUMeTrain Wind Event Week

R. Kaltenberger 01.03.2022 Slide 16

DI-DoD method: Adaptation of "Damage Indicators" for Europe

Part 1: Buildings

	Fujita damage class	f0	f1	f2	f3	f4	f5
	loss ratio (%)	0.1	1	10	50	90	100
	degree of damage	light roof damage	significant roof damage	roof gone	walls partly collapsed	largely blown down	blown away
Α	weakest outbuilding	F0+	F0+	F1-	F1-	F1+	F2-
В	outbuilding	F0+	F1-	F1+	F2-	F2+	F3-
С	strong outbuilding/ weak framehouse	F0+	F1+	F2-	F3-	F3+	F4-
D	weak brick structure/ strong framehouse	F1-	F1+	F2+	F3+	F4-	F5
E	strong brick structure	F1-	F2-	F3-	F4-	F5	F5
F	concrete building	F1-	F2+	F3+	F4+	F5	F5

- A ... like a doghouse or unanchored light outbuildings
- B ... like huts and barns, anchored light outbuildings
- C... like the typical US-midwest framehouses, if weakly anchored/connected to the foundation
- D... like the typical US-midwest framehouses, if well anchored and connected. I Europe typically single-row brick strucktures (mainly 2-dimensional single-row brick walls like garden walls fall into B or C). This category best corresponds to the original Fujita-scale.
- E ... the typical central European masonry house
- F... steel-reinforced concrete buildings. Some historic fort-like buildings (castles) and some Mediterranean-style buildings in wind-prone-areas (like in Dalmatia) also fall into this category with their extremely thick stone-walls (if well-built and kept renovated).

Damage Assessments (11/15)

EUMeTrain Wind Event Week

R. Kaltenberger 01.03.2022 Slide 17

DI-DoD method: Adaptation of "Damage Indicators" for Europe

Part 2: Vegetation

	Fujita damage class	f0	f1	f2	f3	f4	f5
1	loss ratio (%)	0.1	1	10	50	90	100
	damage prevalence	extremely isolated	isolated	significant	frequent	prevalent	total
3	branches - leafy	< F0	F0+	F1-	F1+	F2-	F3-
4	- bare	F0-	F1-	F1+	F2-	F2-	F3-
	tree stands - diseased/ unstable	< F0	F0-	F0+	F0+	F1-	F1-
	- strong	F0+	F1-	F1+	F1+	F2-	F2-
۲	edge trees, hedges, underwood	F1-	F1+	F2-	F2+	F3-	F3-

© ESSL

ZAM
Zentralanstalt
Meteorologie

Damage Assessments (11/15)

EUMeTrain Wind Event Week

R. Kaltenberger 01.03.2022 Slide 18

DI-DoD method: Adaptation of "Damage Indicators" for Europe

Part 2: Vegetation

1							
1	Fujita damage class	f0	f1	f2	f3	f4	f5
1	loss ratio (%)	0.1	1	10	50	90	100
1	damage prevalence	outromoly					
	damage indicator	extremely isolated	isolated	significant	frequent	prevalent	total
j	branches - leafy	< F0	F0+	F1-	F1+	F2-	F3-
ı	- bare	F0-	F1-	F1+	F2-	F2-	F3-
	tree stands - diseased/ unstable	< F0	F0-	F0+	F0+	F1-	F1-
	- strong	F0+	F1-	F1+	F1+	F2-	F2-
:	edge trees, hedges, underwood	F1-	F1+	F2-	F2+	F3-	F3-

© ESSL

G

Damage Assessments (11/15)

EUMeTrain Wind Event Week

R. Kaltenberger 01.03.2022 Slide 19

DI-DoD method: Adaptation of "Damage Indicators" for Europe

Part 2: Vegetation

-							
	Fujita damage class	f0	f1	f2	f3	f4	f5
- 1	loss ratio (%)	0.1	1	10	50	90	100
	damage prevalence	extremely					
	↓ damage indicator	isolated	isolated	significant	frequent	prevalent	total
ĵ	branches - leafy	< F0	F0+	F1-	F1+	F2-	F3-
	- bare	F0-	F1-	F1+	F2-	F2-	F3-
	tree stands - diseased/ unstable	< F0	F0-	F0+	F0+	F1-	F1-
	- strong	F0+	F1-	F1+	F1+	F2-	F2-
	edge trees, hedges, underwood	F1-	F1+	F2-	F2+	F3-	F3-

© ESSL

G

Damage Assessments (12/15)

EUMeTrain Wind Event Week R. Kaltenberger 01.03.2022

Slide 20

DI-DoD method: Adaptation of "Damage Indicators" for Europe

Part 2: Vegetation

	Fujita damage class	f0	f1	f2	f3	f4	f5
	loss ratio (%)	0.1	1	10	50	90	100
	damage prevalence	ovtromoly					
	damage indicator	extremely isolated	isolated	significant	frequent	prevalent	total
G	branches - leafy	< F0	F0+	F1-	F1+	F2-	F3-
н	- bare	F0-	F1-	F1+	F2-	F2-	F3-
1	tree stands - diseased/ unstable	< F0	F0-	F0+	F0+	F1-	F1-
J	- strong	F0+	F1-	F1+	F1+	F2-	F2-
к	edge trees, hedges, underwood	F1-	F1+	F2-	F2+	F3-	F3-

© ESSL

Damage Assessments (12/15)

EUMeTrain Wind Event Week R. Kaltenberger

01.03.2022 Slide 21

DI-DoD method: Adaptation of "Damage Indicators" for Europe

Part 2: Vegetation

	Fujita damage class	f0	f1	f2	f3	f4	f5
	loss ratio (%)	0.1	1	10	50	90	100
ı	damage prevalence	ovtromoly					
	damage indicator	extremely isolated	isolated	significant	frequent	prevalent	total
3	branches - leafy	< F0	F0+	F1-	F1+	F2-	F3-
۱	- bare	F0-	F1-	F1+	F2-	F2-	F3-
	tree stands - diseased/ unstable	< F0	F0-	F0+	F0+	F1-	F1-
ı	- strong	F0+	F1-	F1+	FIF	F2-	F2-
۲	edge trees, hedges, underwood	F1-	F1+	F2-	F2+	F3-	F3-

© ESSL

Damage Assessments (13/15)

EUMeTrain Wind Event Week

R. Kaltenberger 01.03.2022 Slide 22

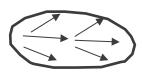
DI-DoD method: Adaptation of "Damage Indicators" for Europe - vegetation

... further refinement with regards to wood species/soil type by Hubrig (2015)

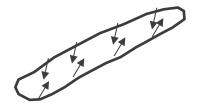
DI 1 - 10	DI Subdivision a - f	DoD 1	DoD 2	DoD 3	DoD 4	DoD 5	DoD 6	DoD 7
Type of Tree	Stability Parameters	small limbs and dead branches	strong branches and crown parts	uprooting or compression	uprooting or trunk	intensive debranching or tearing out, transport	beginning of debarking due to	nearly total debarking due to
		broken	broken	failure	snapping	of big tree parts	"sandblast effect"	"sandblast effect"
1 Oak	a - fragile ground AND unstable forest stands	lower F0	upper F0	lower F1	lower F1	upper F2	upper F3	≥F4
	b - average ground in combination with unstable stands OR vice versa	lower F0	upper F0	Fl	Fl	upper F2	upper F3	≥F4
	c - average ground, average stock	lower F0	upper F0	Fl	lower F2	upper F2	upper F3	≥F4
	d - firm, rocky ground, stable forest stands, only trees with healthy wood	lower F0	upper F0	lower F2	lower F2	upper F2	upper F3	≥F4
	e - forest edge situation & firm ground, only trees with healthy wood	lower F0	Fl	lower F2	F2	lower F3	upper F3	≥F4
	f - solitaire trees & firm ground, only trees with healthy wood	lower F0	Fl	lower F2	F2	lower F3	upper F3	≥F4
2 Beech	a - fragile ground AND unstable forest stands	lower F0	upper F0	lower F1	lower F1	upper F2	upper F3	≥F4
	b - average ground in combination with unstable stands OR vice versa	lower F0	upper F0	lower F1	Fl	upper F2	upper F3	≥F4
	c - average ground, average stock	lower F0	upper F0	Fl	upper Fl	upper F2	upper F3	≥F4
	d - firm, rocky ground, stable forest stands, only trees with healthy wood	lower F0	upper F0	Fl	lower F2	upper F2	upper F3	≥F4
	e - forest edge situation & firm ground, only trees with healthy wood	lower F0	Fl	lower F2	F2	lower F3	upper F3	≥F4
	f - solitaire trees & firm ground, only trees with healthy wood	lower F0	Fl	lower F2	F2	lower F3	upper F3	≥F4

Γ	5 Spruce	a - fragile ground AND unstable forest stands	lower F0	upper F0	upper F0	lower Fl	lower F2	upper F3	≥F4
-	_	b - average ground in combination with unstable stands OR vice versa	lower F0	upper F0	upper F0	lower Fl	lower F2	upper F3	≥F4
-		c - average ground, average stock	lower F0	upper F0	lower F1	Fl	lower F2	upper F3	≥ F 4
-		d - firm, rocky ground, stable forest stands,, only trees with healthy wood	lower F0	upper F0	Fl	Fl	lower F2	upper F3	≥F4
-		e - forest edge situation & firm ground, only trees with healthy wood	lower F0	Fl	Fl	lower F2	upper F2	upper F3	≥F4
		f - solitaire trees & firm ground, only trees with healthy wood	lower F0	Fl	Fl	lower F2	upper F2	upper F3	≥F4

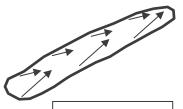
© Martin Hubrig


Damage Assessments (14/15)

R. Kaltenberger / G. Pistotnik 01.03.2022 Slide 23


Tornado or Downburst?

- F Scale, EF or IF Scale are likewise applicable to tornadoes, downbursts and other windstorm damage
- Different damage characteristics:


Damage	Downburst	Tornado
Shape:	length ≳ width	length ≫ width
Borders:	diffuse	sharp
Fall pattern of trees:	divergent (outward)	convergent (inward)
Fall direction of trees:	rather uniform	often very different

Downburst

Slow-moving tornado

Fast-moving tornado

Damage Assessments (15/15)

Squall lines/bow echoes/derechoes

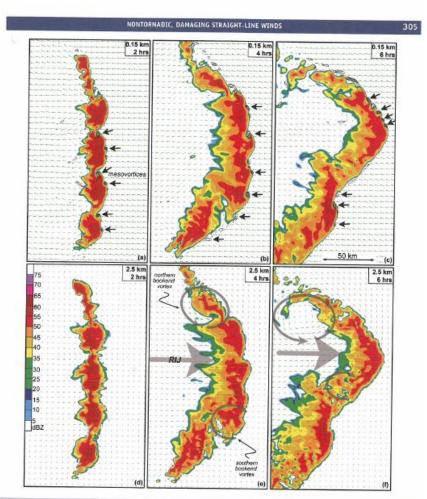
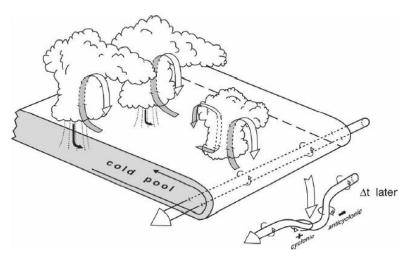



Figure 10.36 Simulation of a bow echo, depicting radar reflectivity (dBZ) in color, along with storm-relative winds (m s^{-1} , green) and vertical vorticity ($\times 10^{-3}$ s⁻¹, black) at 2, 4, and 6 h. Data at 0.15 km and 2.5 km are shown in (a)–(c) and (d)–(f), respectively. Locations of prominent mesovortices at 0.15 km are shown with black arrows. RLJ indicates the rear-inflow jet, and additional broad gray arrows indicate the circulations associated with bookend vortices. (From Atkins and Cunningham [2006]. Courtesy of the American Meteorological Society.)

EUMeTrain Wind Event Week
R. Kaltenberger

- Mesovorticies develop at the gust front of a⁴ simulated bow echo (Black arrows, meso gamma scale 2-20km)
- Meso gamma vorticies are suspected to be responsible for damaging "straight" line winds (damage paths or damage swaths in forests)
- Topic of current research

Markowski, P., & Richardson, Y. (2011). *Mesoscale meteorology in midlatitudes* (Vol. 2). John Wiley & Sons.

Wakimoto, R. M., Murphey, H. V., Davis, C. A., & Atkins, N. T. (2006). High winds generated by bow echoes. Part II: The relationship between the mesovortices and damaging straight-line winds. *Monthly weather review*, 134(10), 2813-2829.

Case studies

Case 1: F4-Tornado Mira/Dolo (VE), Italy, July 8th, 2015 (1/4)

- July 8th, 2015, 17:25-17:45 CEST
- Affected communities: Baluello (Pianiga) Arino (Dolo),
 Pianiga (Cazzago), Cazzago, Dolo (San Bruson), Mira,
 Porto Menai (Mira), Piazza Vecchia
- Length of damage path: 11 km
- Mean width of damage path: 700 m
- Maximum width: 1000 m
- Maximum intensity: F4 (335-421 km/h), violent
- Number of fatalities: 1 (person was forced to stop car because of electric mast blocking the road, then car was picked up by the tornado)
- Number of injuries: 72
- Damage: about 100,000,000 EUR
- Accompanying hail: 5 to 7 cm

Case 1: F4-Tornado Mira/Dolo (VE), Italy, July 8th, 2015 (2/4)

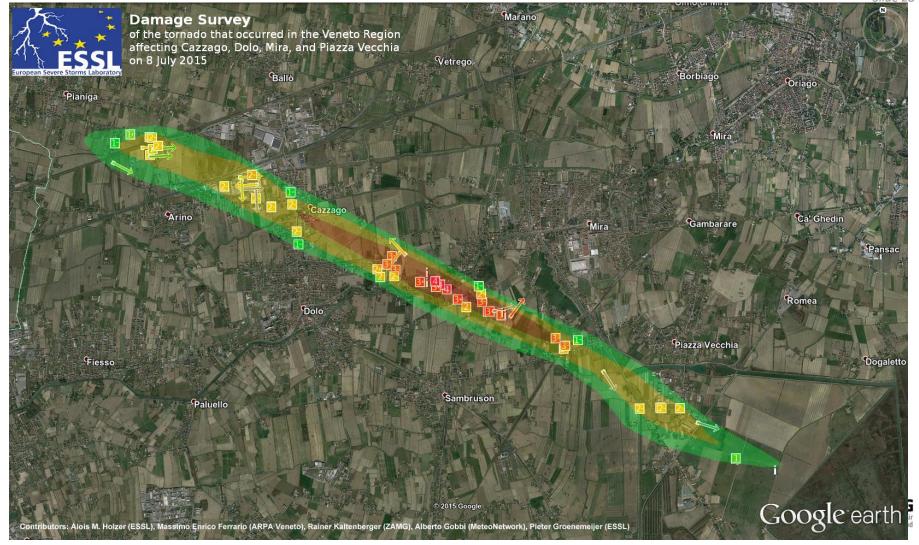
120 data points (mostly buildings) with intensity ratings or other relevant information and hundreds of damage photographs.

Vortrag D-A-CH Kurs R. Kaltenberger 10.06.2021 Folie 27

Corporate Report on the 8 July 2015 Tornado of Mira (VE), Italy

Attachment 2: List of damage ratings

No.	latitude	longitude	DI	DoD	Rating	direction of fallen trees (direction opposite to wind direction)	Other information
1	45.446	120.393	J	2	F1+	120	NW-SE tree fell down
2	45.448	120.471	С	2.5	F1+		first touchdown according to house. Eyewitness house owner: trees were lifted up
3	454.478	120.476	1	5	F1-	90	vineyard flattened dir W-E
4	454.484	120.482	E	1	F2-		cone moved up and down according to eyewitness
5	454.467	120.467	1	5	F1-	90	vineyard flattened dir W-E
6	454.472	120.465	E	1	F2-		
7	45.448	120.453	J	4	F2-	90	few young trees snapped
8	454.491	120.397	E	0	F1-		some shingles gone
9	454.502	120.428	E	0.5	F1+		
10	454.497	120.466	E	1	F2-		roof damaged, some trees gone
11	454.496	120.471	E	1	F2-		tornadic convergence (street signs, corn)
12	454.496	120.471					electric pole bent
13	454.423	120.609	F	0.5	F2-		industrial fence broken. Around 17:40 wind noise: all doors closed - less damage than neighbors factory. Truck flipped over small wall
14	454.437	120.665	F	1	F2+		metal roof cover blown away
15	454.432	120.643	J	2	F1+	90	uprooted tree
16	454.427	120.643	J	2	F1+	180	iron fence, trees fell towards S
17	454.415	120.645				90	debris, waste containers
18	454.421	120.671	В	3	F2-	270	broken concrete wall
19	454.411	120.671				180	mais/corn bent
20	454.404	120.671	E	1	F2-		
21	454.391	12. Jul	E	1	F2-		
22	454.392	12. Jul	С	2	F2-		
22a	454.392	12. Jul	E	1	F2-		
23	45.441	12.074	E	0	F1-		
24	454.393	120.742	Е	1	F2-		
25	454.355	120.748	E	1	F2-		
26	454.337	12.075	Е	0	F1-		
27	454.286	120.909	J	4	F2		field of young trees snapped
28	454 315	120 958		4	F2	320	large tree



Case 1: F4-Tornado Mira/Dolo (VE), Italy, July 8th, 2015 (3/4)

EUMeTrain Wind Event Week R. Kaltenberger 01.03.2022 Slide 28

Case 1: F4-Tornado Mira/Dolo (VE) (4/4)

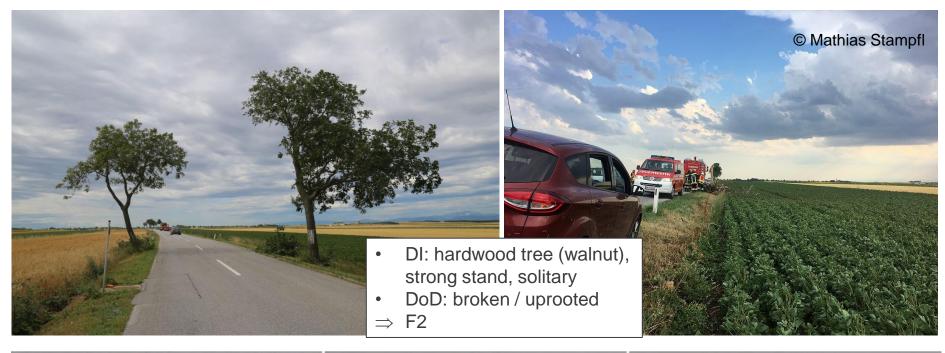
The western neighborhoods of Mira experienced the worst tornado impact. A few buildings were rated F4, including the historical Villa Fini. This villa was assumed to be a "weak brick building" damage indicator because of the very aged and crumbly mortar in between the bricks. This building totally collapsed.

Remnants of Villa Fini (F4, collapsed weak brick structure) in western Mira (photo: Alberto Gobbi)

Holzer, A., Ferrario M.E., Kaltenberger., R., Gobbi, A., Groenemeijer, P. (2015): Corporate Report on the 8 July 2015 Tornado of Mira (VE), Italy, available at https://www.essl.org/cms/wp-content/uploads/20150902-Mira-Tornado-of-8-July-2015-Report.pdf

F4 damage (strong brick structure, walls partly collapsed) in western Mira close to the Villa Fini, on the other side of the streamer (photo: Alberto Gobbi)

Case 2: F1-Squall line - Frauschereck, Upper Austria, August 18th, 2017



Case 3: F2-Tornado near Vienna Int. Airport, July 10th, 2017 (1/2)

EUMeTrain Wind Event Week R. Kaltenberger / G. Pistotnik 01.03.2022 Slide 31

Damage Indicator: Alley trees next to L2063 road

Case 3: F2-Tornado near Vienna Int. Airport, July 10th, 2017 (2/2)

EUMeTrain Wind Event Week R. Kaltenberger / G. Pistotnik 01.03.2022 Slide 32

Damage Indicator: wall of straw cuboids

- \Rightarrow ???
- ⇒ "Forensic Engineering" (Petty, 2013): F2- wind speeds needed to lift cuboids of such dimensions and mass

Practical guidance

Practical guidance (1/2)

Recommended approach

EUMeTrain Wind Event Week R. Kaltenberger / G. Pistotnik 01.03.2022 Slide 34

- As prompt as possible!
- Equipment: photo camera, GPS receiver, compass, maps, paper and pens, ...
- In a team of at least two persons (more solid ratings through collaborative decision making)
- Damage swaths in forests often very dangerous to access caution!
- Witnesses are often traumatized Let them tell if they want to and be careful when asking questions (don't force anything)
- Rate damages in a conservative way
- Collaboration with local weather enthusiasts/spotter organizations has proven its worth, international networking important (e.g. via ESSL)
- A drone can be very useful, but cannot replace expert assessment on the ground

Practical guidance (2/2)

Recommended approach

EUMeTrain Wind Event Week R. Kaltenberger / G. Pistotnik 01.03.2022 Slide 35

- From individual damage to the overall picture!
- Identify Damage Indicators (DIs)
 - Buildings: individual ratings (roof, walls,...)
 - Vegetation: Damage swaths/groups of trees can be pooled
- Rate Degree of Damage (DoD)
- Assign each individual damage an (upper/lower) F class
- Note down: Damage ID (consecutive number), coordinates (lon./lat.), (upper/lower) F class and DI/DoD, falling direction of trees (degree), further comments. Take photos!
- Compare all individual damages, correct individual outliers if appropriate
- Be especially cautious /conservative with rating of maximum strength consult other experts if needed
 - ⇒ A pinch of subjectivity remains, but it can be minimized!

Literature

EUMeTrain Wind Event Week R. Kaltenberger / G. Pistotnik 01.03.2022

Slide 36

Damage scales, DI/DoD method

- Feuerstein, B., Dirksen, E., Dotzek, N., Groenemeijer, P., Holzer, A. M., Hubrig, M., & Rauch, E. (2009, October). An illustrated verbal description of the TORRO and Fujita scales adapted for Central Europe considering building structure and vegetation characteristics. Preprints. In 5th European Conference on Severe Storms, Landshut, Germany (pp. 357-358).
- Feuerstein, B., Groenemeijer, P., Dirksen, E., Hubrig, M., Holzer, A. M., & Dotzek, N. (2011). Towards an improved wind speed scale and damage description adapted for Central Europe. Atmospheric Research, 100(4), 547-564.
- Dotzek, N. (2009). Derivation of physically motivated wind speed scales. Atmospheric Research, 93(1), 564-574.
- Groenemeijer, P., Holzer A. M., Kaltenberger, R. et al. (2019): The International Fujita (IF) Scale, Tornado and Wind Damage Assessment Guide. Draft version as of 17th November 2019. Authored by the IF Scale Steering Group. https://www.essl.org/media/publications/IF-scale_v0.10.pdf
- Rodríguez, O., Bech, J., Soriano, J. D. D., Gutiérrez, D., & Castán, S. (2020). A methodology to conduct wind damage field surveys for high-impact weather events of convective origin. *Natural Hazards and Earth System Sciences*, 20(5), 1513-1531.
- Skywarn Deutschland, Angepasste Fujita-Torro Skala für Vegetations- und Gebäudeschäden (2009). https://www.skywarn.de/downloads/schadensanalyse/schadensskala_bebildert.pdf
- Hubrig, M. (2015): Wooden Plants: A New Damage Indicator / Degree of Damage Matrix, ECSS 2015, Wiener Neustadt
- Hubrig, M. (2004): Analyse von Tornado- und Downburst-Windschäden an Bäumen. Forst und Holz, 59, 78-84.

Case Studies

- Holzer, A., Ferrario M.E., Kaltenberger., R., Gobbi, A., Groenemeijer, P. (2015): Corporate Report on the 8 July 2015 Tornado of Mira (VE), Italy, available at https://www.essl.org/cms/wp-content/uploads/20150902-Mira-Tornado-of-8-July-2015-Report.pdf
- Pistotnik, G., Holzer, A. M., Kaltenböck, R., & Tschannett, S. (2011). An F3 downburst in Austria—A case study with special focus on the importance of real-time site surveys. Atmospheric research, 100(4), 565-579.
- Kaltenberger, R., Weber, M. (2017): Damage Assessment of the 2016 F2-Tornado near Karlstein, Lower Austria. Poster presentation at the European Conference on Severe Storms, Pula, Croatia

Literature

EUMeTrain Wind Event Week

Damage scales, DI/DoD method

R. Kaltenberger / G. Pistotnik 01.03.2022

Slide 37

- Feuerstein, B., Dirksen, E., Dotzek, N., Groenemeijer, P., Holzer, A. M., Hubrig, M., & Rauch, E. (2009, October). An illustrated verbal description of the TORRO and Fujita scales adapted for Central Europe considering building structure and vegetation characteristics. Preprints. In 5th European Conference on Severe Storms, Landshut, Germany (pp. 357-358).
- Feuerstein, B., Groenemeijer, P., Dirksen, E., Hubrig, M., Holzer, A. M., & Dotzek, N. (2011). Towards an improved wind speed scale and damage description adapted for Central Europe. Atmospheric Research, 100(4), 547-564.
- Dotzek, N. (2009). Derivation of physically motivated wind speed scales. Atmospheric Research, 93(1), 564-574.
- Groenemeijer, P., Holzer A. M., Kaltenberger, R. et al. (2019): The International Fujita (IF) Scale, Tornado and Wind Damage Assessment Guide. Draft version as of 17th November 2019. Authored by the IF Scale Steering Group. https://www.essl.org/media/publications/IF-scale_v0.10.pdf
- Rodríguez, O., Bech, J., Sorisurveys for high-impact we
- Skywarn Deutschland, Ang https://www.skywarn.de/c
- Hubrig, M. (2015): Woode
- Hubrig, M. (2004): Analyse

Case Studies

Holzer, A., Ferrario M.E., K

 Mira ()(5) Italy available at https://

Thank you for your attention! Questions?

Viener Neustadt

nd damage field

, 20(5), 1513-1531.

78-84.

Contact: rainer.kaltenberger@zamg.ac.at

3 July 2015 Tornado of

- Mira (VE), Italy, available at https://www.essl.org/cms/wp-content/uploads/20150902-Mira-Tornado-of-8-July-2015-Report.pdf
- Pistotnik, G., Holzer, A. M., Kaltenböck, R., & Tschannett, S. (2011). An F3 downburst in Austria—A case study with special focus on the importance of real-time site surveys. Atmospheric research, 100(4), 565-579.
- Kaltenberger, R., Weber, M. (2017): Damage Assessment of the 2016 F2-Tornado near Karlstein, Lower Austria. Poster presentation at the European Conference on Severe Storms, Pula, Croatia

