VALIDATION of H-SAF SNOW PRODUCTS

Alexander Toniazzo, Civil Protection Italy - Rome

S. Gabellani, F. Avanzi, CIMA - Savona

5° H SAF User Workshop | 24-28 January 2022

EUMETSAT

• Snow Products in H-SAF Operative-Preoperative

Validation results, performances with some case study

Snow Products in H-SAF

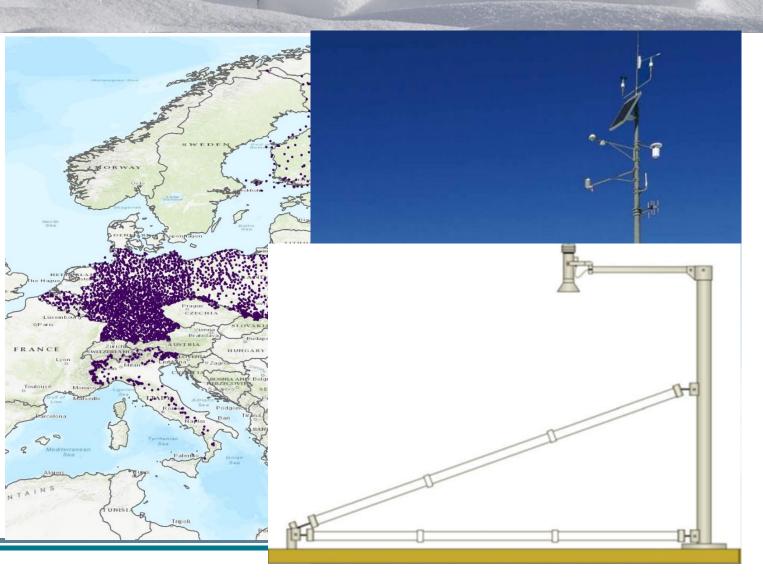
EUMETSAT

H SAF

Legacy products over European area - operational

- H10 Snow detection Snow cover
- H11 Snow status (wet/dry)
- H12 Effective (Fractional) Snow Cover FSC
- H13 Snow Water Equivalent SWE

Global and hemispherical products:


- H34 and H35 new products (Snow det. and FSC) Pre-op
- H31 and H32 ex L-Saf products (Snow det.) Oper

Ground Station Network

Weather stations and snow detection: manual and automatic

SWE Stations

Country	Туре	Number of Stations
Finland	Synoptic	190
Turkey	Synoptic	85
Italy	Snow/Avalanche	264
Poland	Synoptic	595
Germany	Synoptic	1863
Belgium	Teleclim	84
TOTAL		3081

EUMETSAT

HSAF

Validation – Snow detection

•H10 (H31) H32 and H34:

Validation methodology - Confusion matrix: Hits n11, False alarms n01 Misses n10, Correct negatives n00 $\begin{bmatrix} n_{11} & n_{01} \\ n_{10} & n_{00} \end{bmatrix}$

$$POD = \frac{n_{11}}{n_{11} + n_{10}} \tag{1}$$

EUMETSAT

HSAF

POD FAR

$$FAR = \frac{n_{01}}{n_{11} + n_{01}} \tag{2}$$

$$POFD = \frac{n_{01}}{n_{01} + n_{00}} \tag{3}$$

$$ACC = \frac{n_{11} + n_{00}}{n_{11} + n_{00} + n_{10} + n_{01}} \tag{4}$$

$$CSI = \frac{n_{11}}{n_{11} + n_{10} + + n_{01}} \tag{5}$$

$$HSS = \frac{2 \times (n_{11} \times n_{00} - n_{01} \times n_{10})}{\left[(n_{11} + n_{10}) \times (n_{10} + n_{00}) + (n_{11} + n_{01}) \times (n_{01} + n_{00})\right]} \tag{6}$$

Validation results H10

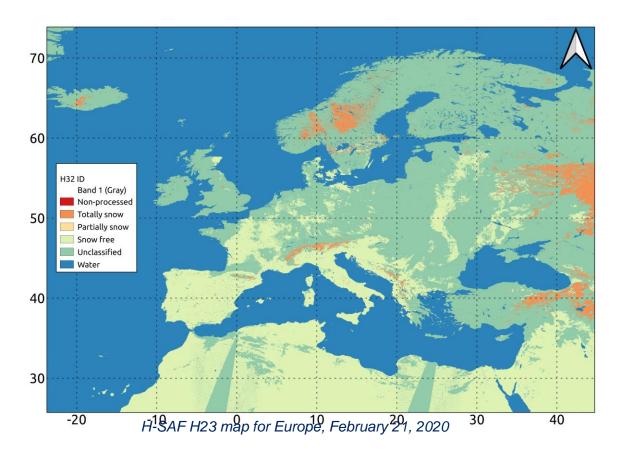
•H10 in OR10 snow season 2019-20:

POD slightly out of spec for Flat/Forest areas, but fully compliant for Mountainous areas. Problems arise in H10 if snow is scarse and snow cover is not homogeneous in space and time, as was in winter 2019/20 in central Europe.

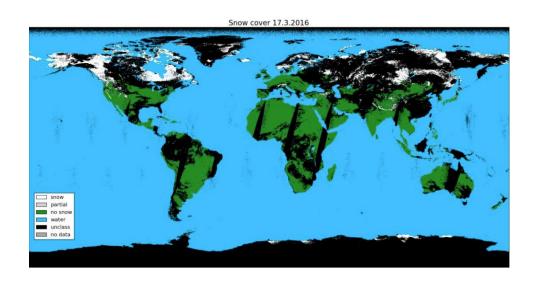
Statistical scores for H10 over mountainous and flat areas period 1.10.2019-31.5.2020

Between target and optimal	Between threshold and target	Threshold exceeded by < 50 %	Threshold exceeded by ≥ 50 %
----------------------------	------------------------------	------------------------------	------------------------------

H-SAF Accuracy requirements for H10 in Flat/Forest areas							
Product require	H10						
Score	Score threshold target optimal						
POD	0.74						
FAR 0.20 0.15 0.05 0.27							


H-SAF Accuracy requirements for H10 in Mountainous areas							
Product requirements H1							
Score	threshold	target	optimal	total			
POD	0.70						
FAR 0.30 0.20 0.05 0.22							

EUMETSAT


HSAF

Validation H32

Validation of the SE-G-AVHRR (H32) snow product

<u>SE-G-AVHRR (H32)</u>: global snow-cover data (SCA) based on measurements from the Advanced Very High Resolution Radiometer (AVHRR) on-board EUMETSAT polar system satellites, the Metop series. Daily, \sim 1 km

5th H SAF User Workshop

EUMETSAT

Validation H32

Times Lill

Validation of the SE-G-AVHRR (H32) snow product

Statistical scores over European areas with ground data in the period 1.10.2019-31.5.2020

Validation area	Finland	Italy	Germany	Poland	Turkey	Average
pod	0.98	0.77	0.63	0.80	0.91	0.82
far	0.12	0.01	0.37	0.41	0.05	0.19

Statistical scores over Extra-European areas with Satellite data in the period 1.10.2019-31.5.2020

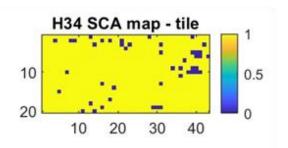
Validation area	California	Siberia	Japan	Average
pod	0.93	0.99	0.93	0.95
far	0.06	0.01	0.01	0.03

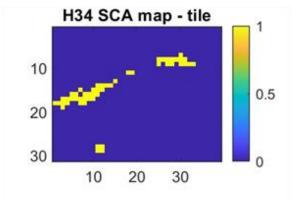
Validation H34

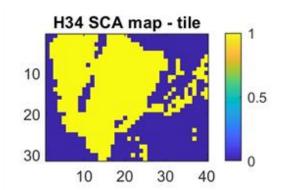
A REAL PROPERTY OF THE REAL PROPERTY OF THE PR

Statistical scores for H34 over mountainous and flat areas with ground station data relatively period 1.10.2018-31.5.2019 (except Finland)

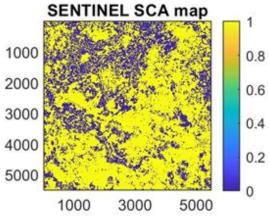
		Finland			
validation area	Belgium	(2017-18)	Finland	Italy	Turkey
pod	0.94	0.95	0.94	0.72	0.66
far	0.39	0.01	0.09	0.05	0.00
csi	0.59	0.95	0.86	0.07	0.66
acc	0.98	0.97	0.92	0.80	0.66

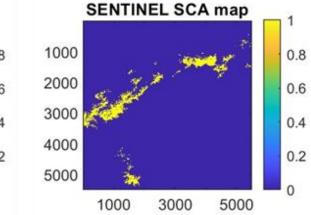

Statistical scores for H34 over mountainous and flat areas with Sentinel2 data relatively period 1.10.2018-31.5.2019

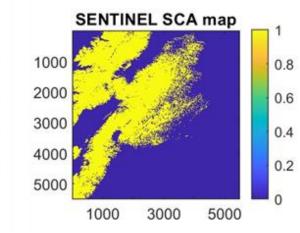

Validation area	Caucasus	Belarus	Turkey	Lebanon	Atlas
pod	0.75	0.98	0.89	0.96	0.73
far	0.15	0.00	0.11	0.59	0.95
csi	0.66	0.98	0.81	0.41	0.04
асс	0.83	0.99	0.90	0.87	0.72


EUMETSAT

H SAF


Validation H34: 3 case studies





Comparison between H34 and Sentinel-2 snow-covered area in Belarus (February 18, 2019, tile 35UPB), Mount Atlas (November 28, 2018, tile 29RPQ), and Lebanon (January 21, 2019, tile 37SBT).

10

EUMETSAT

Validation H10, H32, H34 discussion

EUMETSAT

Problems arise in H10 if snow is scarse and snow cover is not homogeneous in space and time, as was in winter 2019/20 in central Europe.

H 34: full disk extension of H10 (to superseed H10)

validation strategy as in H10 is used, with ground data of the same countries. For extra H-SAF areas a new validation scheme using Sentinel2 data with European and extra-European target areas is used (CIMA).

H32: hemispherical Snow Detection Product ex L-SAF

Same strategy as in H34, with ground data over Europe and Satellite data (CIMA) over extra-European areas. Results are very good (High resolution)

Validation H11 Snow status (wet/dry)

H-SAF Accuracy requirements for H11						
Product requirements						
Score	threshold	target	optimal			
POD 0.60 0.80 0.90						
FAR 0.20 0.10 0.05						

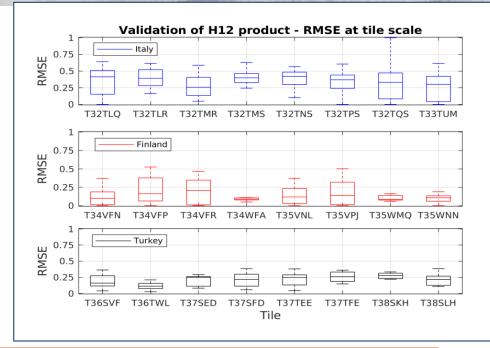
Finland	ott-19	nov-19	dic-19	gen-20	feb-20	mar-20	apr-20	mag-20	Total
numbers of obs	121	248	516	342	367	465	323	261	2643
pod	0.90	0.99	1.00	1.00	0.93	0.81	0.74	0.24	0.87
far	0.71	0.11	0.19	0.13	0.02	0.12	0.10	0.23	0.12
csi	0.08	0.88	0.81	0.87	0.91	0.73	0.69	0.23	0.78
pofd	0.69	1.00	1.00	1.00	0.53	0.65	0.49	0.10	0.63
асс	0.99	0.88	0.81	0.87	0.91	0.74	0.71	0.51	0.79

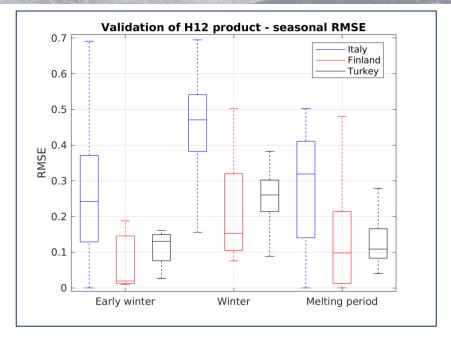
EUMETSAT

H11 is validated with a temperature proxy – so no measure about snow wetness is made.

In areas where there is a homogenous and stable snow cover product H11 can be considered reliable.

If a clear snow melting period - that is areas with snow cover going from dry to wet in H11 - is detected by the product, the data is valuable and usable for those hydrological applications, in which snow melting is an important factor.


Validation H11 discussion


EUMETSAT

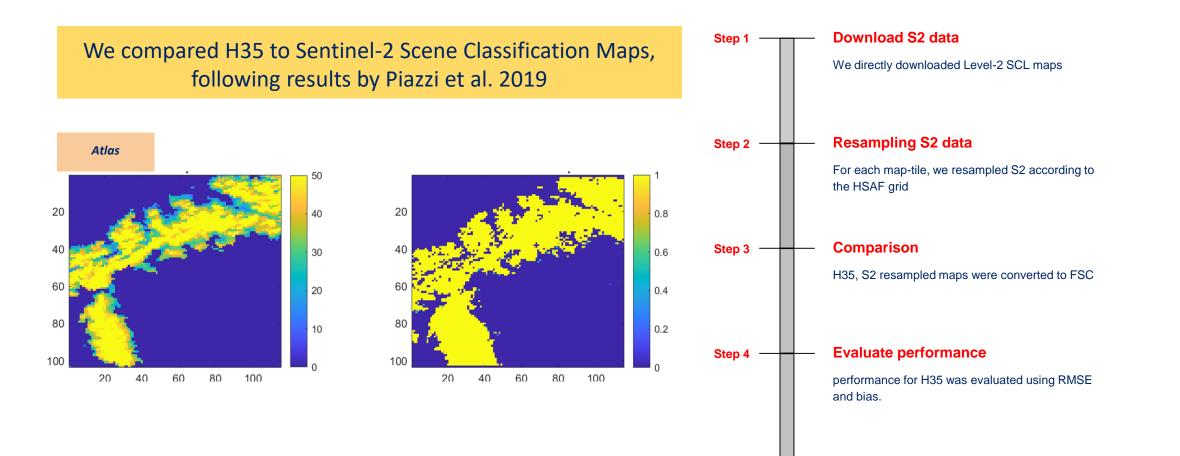
- H11 is restricted to flat areas in Nordic countries. Validation is performed only in in Finland, with an updated validation scheme since 2018.
- In the mean, product H11 satisfies the requirements, with results of POD between target and optimal and FAR between threshold and target.
- Validation group strongly recommends using product H11 in Nordic areas only during the winter and if snow cover is known to be sufficiently homogenous.

Validation of H12 product by Sentinel-2

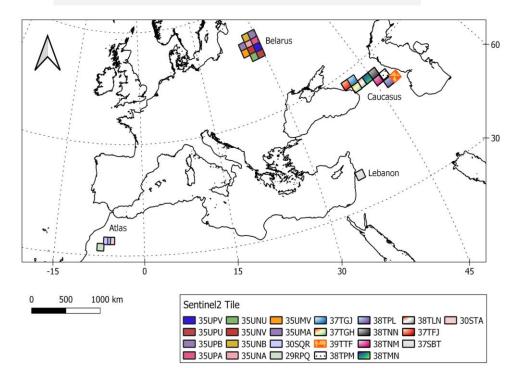
- RMSE scores are generally lower than 0.4.
- Complex topography in mountainous areas affects the consistency between H12 product and Sentinel-2 snow maps, especially over the Italian Alps.

Region	RMSE
Finland	0.15
Italian Alps	0.33
Turkey	0.21

higher RMSE in winter (H12 overestimates respect to S2) especially in mountainous region.

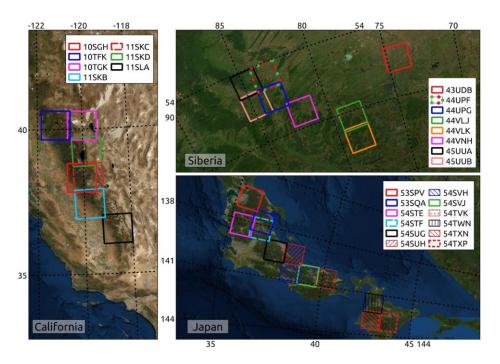

Validation of the ESC-H (H35) snow product

ESC-H (H35): daily FSC maps for the northern Hemisphere, by VIS/IR radiometry is based on multichannel analysis of the AVHRR instrument onboard MetOp satellites


EUMETSAT H SAF

Validation of the ESC-H (H35) snow product

Validation of the ESC-H (H35) snow product


H35: Oct. 1 2019 - Jan. 31 2020

We considered S2 tiles across:

- Siberia
- Japan
- California
- Belarus
- Caucasus
- Lebanon
- Atlas

H35: Oct. 1 2019 - May 31 2020

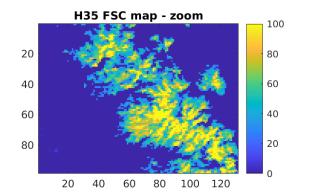
EUMETSAT

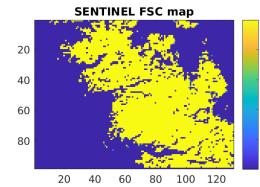
H35: Caucasus, Lebanon, Atlas, Belarus

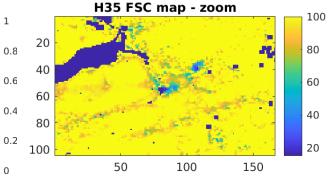
RMSEs and biases for all areas of interest were below thresholds (50% and 40%, respectively).

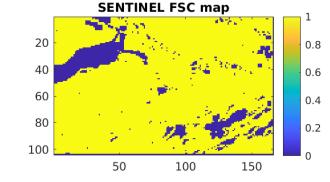
Area of interest	RMSE	Bias
Caucasus	38%	-20%
Belarus	3%	0.25%
Atlas	19%	-6%
Lebanon	22%	-6%

Thresholds for Fractional Snow Cover products (H12, H35)

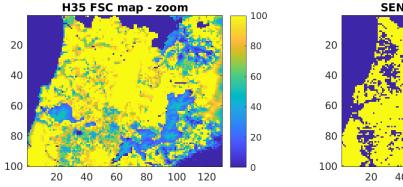

H-SAF Accuracy requirements FSC Products					
Product requirements Root Mean Square Error					
Score	threshold	target	optimal		
Flat/ Forested areas RMSE	40%	20%	10%		
Mountainou s areas RMSE	50%	30%	10%		


EUMETSAT

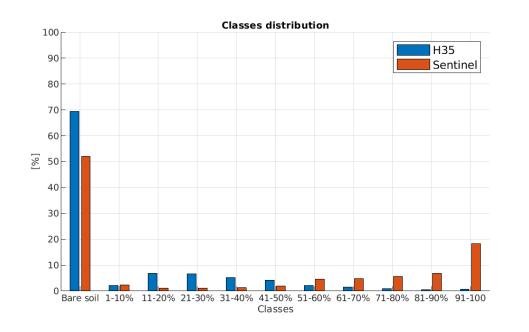

Validation of the ESC-H (H35) 3 case studies

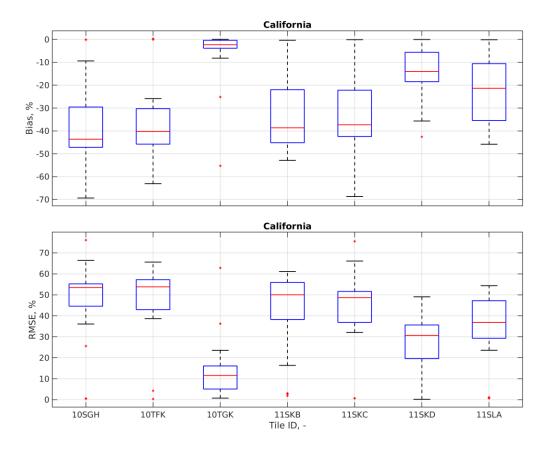

California (February 06, 2020, tile 11SKC)

Siberia (March 23, 2020, tile 44UPF)



Qualitatively, snow patterns estimated by H35 and by Sentinel 2 are consistent.

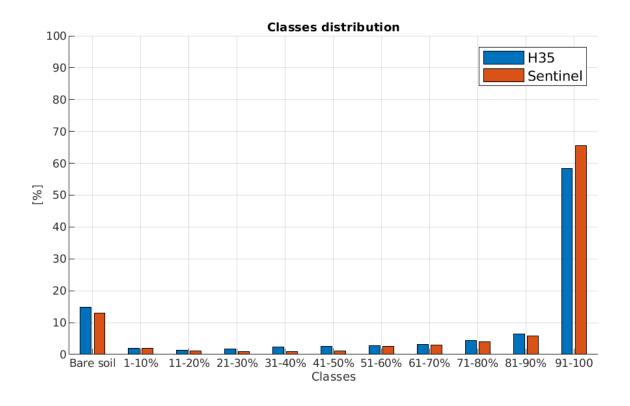

Japan (February 12, 2020, tile 54SVJ).

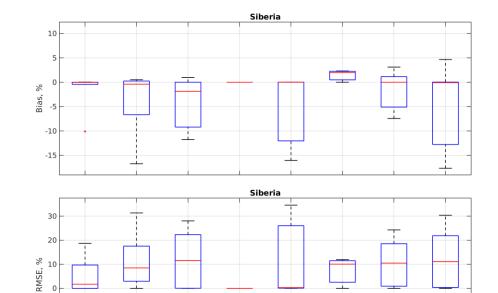


EUMETSAT

H35: California (mountain region)

RMSE 40%, BELOW THRESHOLD





EUMETSAT

H35: Siberia (flat region)

RMSE 17.5%, BETWEEN TARGET AND OPTIMAL

-10 -20

43UDB

44UPF

44UPG

44VLJ

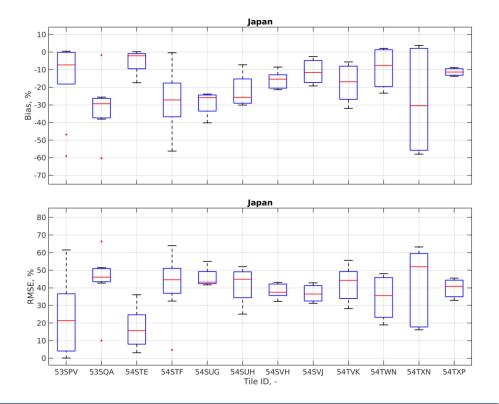
Tile ID, -

44VLK

44VNH

45UUA

45UUB



EUMETSAT

H35: Japan (mountain region)

RMSE 39%, BELOW THRESHOLD

5th H SAF User Workshop

EUMETSAT

Validation H12 and H35 discussion

EUMETSAT

- In all areas H12 product meets the RMSE-based accuracy requirements.
- CIMA study: threshold RMSE for mountainous areas not exceeded in any validation area, but values are just above threshold (very difficult mountainous terrain selected).
- Turkey study: values are much better and are between target and optimal. In areas where snow cover is more homogeneous in space and in time, H12 product has better performances, even in mountainous areas.

<u>H 35</u>: northern hemispheric extension of H12 (to superseed H12 in the next years) Same validation strategy of H12 (\underline{CIMA})

Validation H13 Snow Water Equivalent

H13: operational

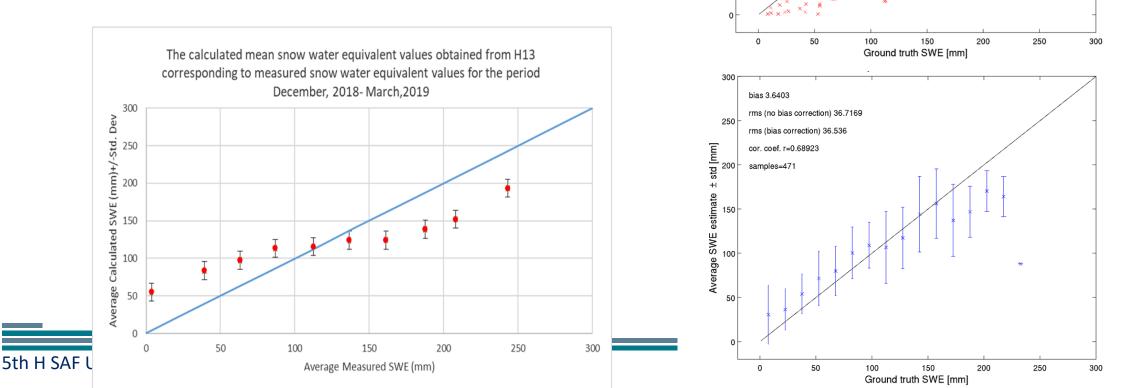
Data from Poland, Finland, Turkey, Germany. Thresholds are RMSE in mm of SWE.

Area	Threshold	Target	Optimal	
flat (RMSE)	40 mm	20 mm	10 mm	
mountain (RMSE)	45 mm	25 mm	15 mm	

Between target and	Between threshold	Threshold exceeded	Threshold exceeded
optimal	and target	by < 50 %	by ≥ 50 %

EUMETSAT

HSAF


H-SAF Accuracy requirements for H13								
Product requirements		RMSE (mm)						
	threshold	target	optimal	AVERAGE	Poland	Finland	Turkey	Germany
N. samples					441	597	2848	1637
Mountainous	45 mm	25 mm	15 mm	39.2 mm			39.2 mm	
Flat Area	40 mm	20 mm	10 mm	23.5 mm	9.5 mm	36.7 mm		24.2 mm

Validation in 2021 OR10

Validation H13 case study

Detail over Finland and Turkey

<u>General underestimation</u> of SWE when values are larger than 150 mm.

EUMETSAT

HSAF-H13 SWE accuracy - Finnish snow course data, winter 2019 - 2020

300 ſ

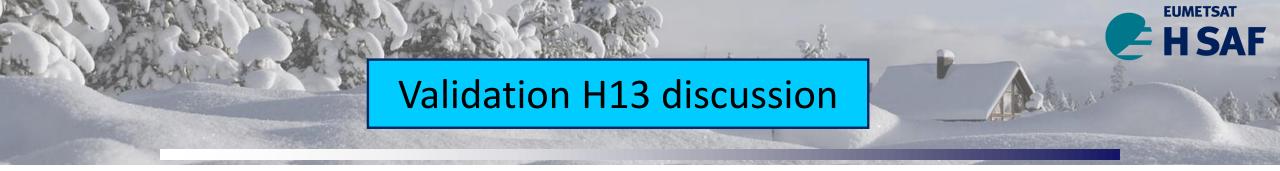
250

200

150

100

50


Estimated SWE [mm]

bias 3.6403

samples=471

rms (no bias correction) 36.7169

rms (bias correction) 36.536 cor. coef. r=0.68923

- H13 satisfies the Product Requirements, with <u>RMSE between threshold and</u> <u>target</u> values.
- Since the SWE product is developed for dry snow conditions, <u>validation</u> <u>period</u> is selected as December to March (or to April). In Finland, where snow cover is more stable, the whole period October-May is evaluated.
- <u>Best performance</u> are obtained in flat areas.
- Turkish and Finnish studies: <u>general underestimation</u> of SWE when values are larger than 150 mm, slight <u>overestimate below</u>.

- 1. Snow Detection Products (Snow Cover) H10, H34, H32
 - Best performances in flat areas, were snow cover is more homogeneous
 - Problems arise in non homogeneous snow cover (space and time)
 - Validation with ground data very difficult (filtering needed). Better performances with high resolution satellite data (CIMA), especially for H32 (high resolution)
- 2. Snow Status (Dry/Wet) H11: Validation suggest to use the product only in Nordic areas (flat). Validation very difficult due to proxi data (temperature)
- 3. Fractional/Effective Snow Cover H12 and H35: Validation results good in flat areas, acceptable in mountainous areas, due to problems of resolution (complex terrain) and not homogeneous snow cover in complex orography.
- 4. SWE Products H13: Performances are better in flat areas (RMSE 10-20 mm), in mountainous areas RMSE around 30-40 mm. Underestimation if more than 100 cm snow.

EUMETSAT HSAF

alexander.toniazzo@protezionecivile.it