

AUTOMATED IN SITU MEASUREMENT OF SOLID PRECIPITATION AND SNOW COVER: LESSONS LEARNED DURING WMO-SPICE AND BEYOND

Craig D. Smith, Climate Research Division, Environment and Climate Change Canada,

Saskatoon, Canada, craig.smith2@canada.ca

WMO SOLID PRECIPITATION INTERCOMPARISON EXPERIMENT (WMO-SPICE) 2012-2015

INTRODUCTION

- The measurement of solid precipitation (and snow cover) is still one of the most difficult meteorological variables to make with any known degree of uncertainty
- Observer effect theory: the mere observation of a phenomenon inevitably changes that phenomenon → Precipitation gauges modify the measurement environment
- There are a multitude of advantages to automation but technology often tends to increase the sources of uncertainty (e.g. proprietary algorithms/firmware, signal noise, sampling errors, and increasing technical complexity)

Measurements:

Solid Precipitation → Gauges and shielding, bias due to wind and transfer functions, non-catchment instruments and emerging technologies

Snow Depth → Sensors, surface targets and infrastructure, siting

Snow Water Equivalent → Sensors, emerging technologies

WMO-Solid Precipitation Inter-Comparison Experiment (SPICE)

- Objective: to provide guidance on the performance and use of automated methods for the measurement of solid precipitation and snow on the ground
- 2 field seasons: 2013/2014 and 2014/2015
- 16 countries hosting 20 field sites
- 27 sensor types, > 270 total sensors tested
- 1429 p. report (WMO library), 20+ publications

	0	0	n

1.	Caribou Creek, Saskatchewan, Canada	11.	Haukeliseter, Norway	
2.	Bratt's Lake, Saskatchewan, Canada	12.	FMI/Sodankylā Arctic Research Centre, Finland	
3.	Marshall Site, Colorado, USA	13.	Valdai, State Hydrological Institute, Russia	
4.	CARE, Ontario, Canada	14.	Voljskaya Observatory, Gorodec, Russia	
5.	Tapado AWS, Región de Coquimbo, Chile	15.	Pyramid Observatory, Nepal	
6.	Formigal, Spain	16.	Gochang, Korea	
7.	Col de Porte, France	17_	Joetsu, Japan	
8.	Weissfluhjoch, Davos, Switzerland	18.	Rikubetu, Hokkaido, Japan	
9.	Forni Glacier, Italy	19.	Guthega Dam, New South Wales, Australia	
10.	Hala Gasienicowa Station, Poland	20.	Mueller Hut Weather Station, New Zealand	

SOLID PRECIPITATION

OTT Pluvio² *

Geonor T-200B*

Meteoservis

- Systematic bias in the gauge measurement of solid precipitation due to wind can be 100%!
- Instrument profile has an impact on under-catch but the shield configuration is more important
- There can be issues with heated tipping buckets due to melt lag, potential chimney effects and significant evaporation

Lambrecht rain[e]H3

Gauge Catch Efficiency of Solid Precipitation vs. Wind Speed

Kochendorfer, J., et al.: Analysis of single-Alter-shielded and unshielded measurements of mixed and solid precipitation from WMO-SPICE, Hydrol. Earth Syst. Sci., 21, 3525-3542, https://doi.org/10.5194/hess-21-3525-2017, 2017.

Testing SPICE "Universal" Transfer Functions on 2016/2017 Accumulated Time Series

Why the large under-adjustment at cold and windy sites?

Emerging Technologies for measuring Solid Precipitation

Lufft WS100 24GHz Doppler radar

ECCC POSS

Polarized X-band Doppler radar (not commercially available)

Vaisala FD71P

Forward scatter laser visibility and present weather

OTT Parsivel²

Laser disdrometer

Thies CLIMA

Laser disdrometer

- Doppler radar, light extinction, light scattering
- Are not subject to the same aerodynamic under-catch as accumulating gauges
- Considerations: power requirements, proprietary processing algorithms, unattended operation
- SPICE: seasonal accumulations are less biased than short term event based accumulations: issues with estimating the density of snowfall \rightarrow not recommended for event measurement
- Ancillary observation for light event detection, precipitation typing and partitioning, enhanced quality control for accumulating gauges
- **Hydrometeor fall velocity**: high correlation between fall velocity and gauge catch efficiency → developing, refining, and real-time application of transfer functions for adjusting undercatch

SNOW DEPTH

Ultrasonic

Range: 0.5 to 10 m Accuracy: ± 1-2 cm Resolution: 0.25 mm

Laser

Range: 0 to 10 m Accuracy: ± 0.5 cm Resolution: 0.10 mm

Ultrasonic

Base Target: Mown Grass

Laser

3 m tower at Col de Porte, France

Instrument and Infrastructure Design: Surface Targets

Grey Textured Plastic

Green Artificial Turf

Nitu et al. (2018)

Instrument and Infrastructure Design: Mounts and Heating

Unheated sensor, unheated horizontal boom

Unheated sensor, heated angled boom

Heated sensor, unheated horizontal boom

Heated sensor, heated angled boom

Instrument Siting

Sensor siting is important!

SNOW WATER EQUIVALENT (SWE)

Passive Gamma

Pros:

- Relatively large footprint
- Easy above ground installation
- Not influenced by infrastructure
- No maintenance required

Cons:

- \$\$
- Long (24 hr) integration period
- Sensitive to pre-freeze-up soil moisture changes (calibration)
- Seems to be sensitive to meltwater infiltration during melt

Snow Scales or Pillows

Pros:

- Higher precision, higher frequency
- Direct measurement of snow mass

Cons:

- harder to install, more maintenance
- Snow "bridging"

Emerging Technologies

GNSS/GPS Dual Receiver

Acoustic Sensing of Snow

Analysis of reflected acoustic waves to derive:

- Depth
- Density
- Liquid water content
- Temperature

