

HSAF SOIL MOISTURE WEEK

Webinars, 4-8/11/2019

Introduction on soil moisture and how products can be integrated into models

Jean-Christophe Calvet Meteo-France

Research is needed to better understand, simulate and forecast coupled land-atmosphere processes.

Soil moisture impacts soil-plant system processes

- Plant water stress
 - → photosynthesis and biomass production
- > Leaf transpiration, evaporation
 - \rightarrow Latent heat flux (LE)
- Soil hydraulic conductivity
 - \rightarrow Runoff of precipitation water to rivers

Soil moisture impacts the surface energy budget

- Surface albedo
- Soil thermal conductivity
 - \rightarrow Ground heat flux (G)
 - \rightarrow Sensible heat flux (H = Net radiation LE G)
 - \rightarrow Land surface temperature
 - \rightarrow Air temperature and humidity

Applications

- Weather forecast, seasonal predictions
 - Soil water storage: up to 300 mm
 - \succ Large memory effect \rightarrow initialization of models
- Hydrology
 - Simulation of river discharge
 - Flood forecast
 - Estimation of accumulated precipitation (from microwave satellite observations)

Applications

- Agriculture and forestry
 - Drought and irrigation monitoring
 - Forest fire risk
- Prediction and assessment of geological disasters
 - Landslides
 - Clay shrinkage and swelling (impact on built areas)

Applications: e.g. SIM (Safran-Isba-Modcou)

Écart à la normale de l'indice d'humidité des sols au 1er août 2019

HSAF Why measuring soil moisture?

Brobe

- Monitor droughts
- Validate
 - Model simulations
 - Satellite products
- Assess climate change impacts
 - Long in situ time series are needed
 - At several depths
 - Together with soil temperature

HSAF Why measuring soil moisture?

International Soil Moisture Network (https://ismn.geo.tuwien.ac.at/en/)

Long term research campaings

Since 2007

SMOSMANIA

 \geq 21 stations in southern France

> 4 depths: 5, 10, 20, 30 cm

Sondes Thetaprobe après installation dans l'une des stations SMOSMANIA, à 4 profondeurs (5.10.20.30cm).

Model validation

Albergel et al. 2015

HSAF Observations by Meteo-France

SMOSMANIA

Validation of satellite products

Processes: soil-cooling rain

Precipitation-induced sensible heat into the soil

> Train ~ 6 degree C T5cm ~ 22 degree C

~ 800 W m-2

Zhang et al. 2019

Processes: snow

Processes: soil thermal conductivity

Integration of satellite data into models

Integration of satellite data into models

- LDAS = "Land Data Assimilation System"
- Through a weighted combination of land surface model simulations and satellite-derived observations land surface variables can be better estimated than by either source of information alone (Reichle et al. 2007)
- Data assimilation can spatially and temporally integrate the observed information into a land surface model

- Two-step approach
 - Forecast predict the state of the system \mathbf{x}_k^f at time t_k from previous time step \mathbf{x}_{k-1}^a
 - Analysis correct the predicted state \mathbf{x}_k^f with observations \mathbf{y}_k^o to give \mathbf{x}_k^a \mathbf{y}_{k-1}^o

- Two-step approach
 - Forecast predict the state of the system \mathbf{x}_k^f at time t_k from previous time step \mathbf{x}_{k-1}^a
 - Analysis correct the predicted state \mathbf{x}_k^f with observations \mathbf{y}_k^o to give \mathbf{x}_k^a \mathbf{y}_{k-1}^o

- Two-step approach
 - > Forecast predict the state of the system \mathbf{x}_k^f at time t_k from previous time step \mathbf{x}_{k-1}^a
 - Analysis correct the predicted state \mathbf{x}_k^f with observations \mathbf{y}_k^o to give \mathbf{x}_k^a \mathbf{y}_{k-1}^o

- Two-step approach
 - > Forecast predict the state of the system \mathbf{x}_k^f at time t_k from previous time step \mathbf{x}_{k-1}^a
 - Analysis correct the predicted state \mathbf{x}_k^f with observations \mathbf{y}_k^o to give \mathbf{x}_k^a \mathbf{y}_{k-1}^o

- Two-step approach
 - > Forecast predict the state of the system \mathbf{x}_k^f at time t_k from previous time step \mathbf{x}_{k-1}^a
 - Analysis correct the predicted state \mathbf{x}_k^f with observations \mathbf{y}_k^o to give \mathbf{x}_k^a \mathbf{y}_{k-1}^o

- Two-step approach
 - > Forecast predict the state of the system \mathbf{x}_k^f at time t_k from previous time step \mathbf{x}_{k-1}^a
 - Analysis correct the predicted state \mathbf{x}_k^f with observations \mathbf{y}_k^o to give \mathbf{x}_k^a \mathbf{y}_{k-1}^o

Applications: e.g. LDAS-Monde

- Within the SURFEX modelling platform
 - ISBA land surface model (Calvet et al. 1998, Gibelin et al. 2008)
 - River routing / groundwater (CTRIP) (Decharme et al. 2019)
- Joint sequential assimilation of
 - Surface soil moisture and Leaf Area Index
 - Using a Kalman filter (Barbu et al. 2014, Bonan et al. 2019)
- Global scale: 0.25°x0.25° (Albergel et al. 2019)
- Regional scale: 1 km x 1 km

Applications: e.g. LDAS-Monde

- Observed variables
 - Surface soil moisture (model equivalent 1 cm 4 cm)
 - Leaf Area Index
- Control variables
 - Soil moisture at 7 depths (down to 1 m)
 - Leaf biomass
 - Updated thanks to their sensitivity to observed variables
 - Other model variables are impacted through biological processes and feedbacks in the model

Applications: e.g. LDAS-Monde

- Example (Albergel et al. 2019)
 - Global analysis 0.25° x 0.25° from 2010 to 2018
 - Atmospheric forcing: ERA5
- Observations

Applications: e.g. LDAS-Monde

Selection of 19 regions known for being potential hotspots for droughts and heatwaves

Applications: e.g. LDAS-Monde

Monthly anomalies for 2018 SSM anomalies LAI anomalies – MUDA – EAFR WEUR • 2 2 1 0 0 -1 -1 -2-21an 2018 1an 2018 4e02018

Applications: e.g. LDAS-Monde

2018 heatwave: Northwestern Europe

Applications: e.g. LDAS-Monde

> 2018 heatwave: Murray-Darling basin (Australia)

Soil moisture: recap

Observations

- Global satellite products
 - > ASCAT on METOP (EUMETSAT HSAF, Copernicus GLS)
 - SMOS (ESA)
 - SMAP (NASA)
 - Sentinel-1 downscaling (Copernicus GLS)
- Global in situ network
 - ISMN (TUWien)

Soil moisture: recap

Modelling

- Land surface models
 - Sub-daily variability
 - Soil moisture / temperature at various depths
 - Vegetation biomass and LAI
 - Water, energy, carbon fluxes
 - Can be forced by ERA5 at a global scale (0.25° x 0.25°)

Soil moisture: recap

Data assimilation

- Sequential assimilation
 - Needed for monitoring applications
 - > ISBA model: joint assimilation of SSM and LAI is possible
 - Photosynthesis-driven phenology: flexible LAI
- Applications
 - Drought monitoring
 - Agriculture, forestry
 - Hydrology (coupling to a river routing system is needed)

Thank you for your attention