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B-52H after catching SEV MTW (landed ‘safely’).

East Spanish Peak, Colorado, USA, 1964.01.10.

http://www.whiteeagleaerospace.com/an-amazing-tail/

Effects of mountain wave flow and turbulence



Aircraft turbulence - definition

• „Irregular motion of an aircraft in flight, especially when characterized by rapid up-and-down 
motion, caused by a rapid variation of atmospheric wind velocities” (AMS Glossary)

• Microscale atmospheric turbulence in general: characterized by fluctuations of all three
velocity components and also other parameters (e.g. air pressure), provides both horizontal
and vertical transport of the fluid properties. These cause variation of the property in time.

• Fluctuations are related to vertical + horizontal wind shear and static stability (buoyancy)

• In operational NWP models the fluxes are mostly parameterized (typical scales of the eddies
are < 1km)
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Turbulent kinetic energy (TKE)

• Widely used in NWP model parameterizations

• It can be calculated from a prognostic equation
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TKE forecasts in usual conditions (example) 

• TKE from the AROME model (2.5 km horizontal resolution)

• Mixed (convective) boundary layer

• Strong convective motions („thermals”, „plumes”) can appear

TKE 14UTC
980 hPa ~ 300m ASL
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B

A B

Planetary Boundary Layer
(PBL) top

Stable flow
over the PBL

Statically stable region
over the Lake Balaton

W: (-0.5 , 0.5) m/s

Moderate TKE
1-2 J/kg

Mixed region, almost 
dryadiabatic lapse-rate



TKE expressed in different units

• In NWP models, 10m wind gusts are also parameterized upon TKE

• Similar relationship can be used for the levels above the surface as well

• TKE is thus represented as a fluctuation of wind speed (either vertical or
horizontal) with corresponding kinetic energy
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Strong turbulence: 29 October 2017 windstorm

• Lowering of the jet on the rear
side of a deep cyclone

• Deep convection formed close to a 
cold front

• Wind gusts up to 130 km/h 
registered, extensive damage

Gusts exceeding 100 km/h

Fallen trees, damages
(OKF)

AT 850 hPa+wind speed



TKE profile

• Magnitude of u’ was about 10 m/s (TKE was 10-11 J/kg)

• Area of high turbulence reached the lowered jet area

• Weakly stable region behind the cold front, not related to deep convection

A

B

B
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> 10 J/kg TKE
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Lowering of the
upper-air jet



Turbulence detection, estimation

• Wind gusts and gust factors at 10m : 
footprints of turbulence at the
ground

• Mostly 1.2-1.8. In neutral/unstable
conditions often 1.8-3

• Aircraft observations (e.g. 
accelerometers), reports (PIREP, ARS, 
AMDAR) – medium/heavy size
aircrafts

• Remote measurements (windprofiler, 
lidar) – rare in central Europe

Gust factor: wind gust/10m wind speed

15,6 m/s gust
by 4.3 m/s 
10m wind speed
(10min. average)

Extraordinary high gust factors (> 3) caused by
local, strong turbulence are usually not
predicted by operational NWP models



EDR diagnostics

• ICAO, Annex 3 turbulence metric –
categories of turbulence defined
upon the cube root of the Eddy
Dissipation Rate (EDR)

• Related to TKE and size of the
turbulent eddies (mixing length )

• Aircraft independent parameter, 
but thresholds are different for
heavy- and light-weight aircrafts
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Other situations with usually high TKE

• Thunderstorms, tops of 
convective clouds

• Mountain waves

• Problems: only vertical
diffusivity and isotropic
turbulence expected in most of 
the NWP models, persistence of 
turbulence in stable regimes, 
very small scale effects, terrain-
types not represented, etc.

• Bumpiness – sudden changes of 
flight altitude could be 
produced solely by wind
shear/gravity waves in almost 
laminar flow? 

Large-amplitude
mountain wave
(over central Slovakia)

Turbulence in the rising „bubble” at
the top of a simulated thunderstorm



Mountain waves

Simulated mountain wave with large amplitude during the

High-Tatra downslope windstorm on 15 March 2013 



Theoretical background

• Equation of motion (conservation of momentum)

• First law of thermodynamics (cons. of energy)

• Continuity equation (conservation of mass)
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= 𝜌

𝜕𝑢𝑖

𝜕𝑡
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Considerations

1. Incompressibility

2. Earth’s rotation is neglected

3. Radiation and latent heat neglected

4. Inviscideness

5. Stationarity

6. Reynolds-decomposition

7. Linearization (laminarity)

8. Boussinesq-approximation

9. Hydrostatic approximation for averages

10. 2D description (x,z plane)

11. Horizontal homogeneity

12. Neglecting convection in averages

13. Exchanging density with potential temperature

14. Buoyancy, BV-frequency, reduced pressure
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Non-stationary equations

• Horizontal motion

• Vertical motion

• Thermodynamics

• Continuity
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= 𝑏

𝜕𝑏

𝜕𝑡
+ 𝑢

𝜕𝑏

𝜕𝑥
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Stationary equations
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−
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Non-stationary equations
𝜕𝑢′
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2
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𝜕2𝑤′

𝜕𝑥2
= 0



Non-stationary equations
𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥

2
𝜕2𝑢′

𝜕𝑧𝜕𝑥
+

𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥

𝜕2𝑢

𝜕𝑧2

𝜕𝑤′

𝜕𝑥
−

𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥

2

+ 𝑁2
𝜕2𝑤′

𝜕𝑥2
= 0

−
𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥

2
𝜕2𝑤′

𝜕𝑧2
+

𝜕2𝑢

𝜕𝑧2

𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥

𝜕𝑤′

𝜕𝑥
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𝜕

𝜕𝑡
+ 𝑢

𝜕
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2
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𝜕2𝑤′
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= 0

𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥
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𝜕2
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+

𝜕2

𝜕𝑧2
+ 𝑁2

𝜕2

𝜕𝑥2
𝑤′ =

𝜕2𝑢

𝜕𝑧2

𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥

𝜕𝑤′

𝜕𝑥

1

𝑢

𝜕

𝜕𝑡
+

𝜕

𝜕𝑥

2
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑧2
+

𝑁2

𝑢
2

𝜕2

𝜕𝑥2
−

1

𝑢

𝜕2𝑢

𝜕𝑧2

1

𝑢

𝜕

𝜕𝑡
+

𝜕

𝜕𝑥

𝜕

𝜕𝑥
𝑤′ = 0

Stationary equations from the above:

𝜕2

𝜕𝑥2

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑧2
+

𝑁2

𝑢
2 −

1

𝑢

𝜕2𝑢

𝜕𝑧2
𝑤′ = 0

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑧2
+

𝑁2

𝑢
2 −

1

𝑢

𝜕2𝑢

𝜕𝑧2
𝑤′ = 𝜔0 𝑧 𝑥 + 𝑤0 𝑧

Scorer-parameter ℓ2 =
𝑁2

𝑢
2 −

1

𝑢

𝜕2𝑢

𝜕𝑧2



Non-stationary equations

1

𝑢

𝜕

𝜕𝑡
+

𝜕

𝜕𝑥

2
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑧2
+

𝑁2

𝑢
2

𝜕2

𝜕𝑥2
−

1

𝑢

𝜕2𝑢

𝜕𝑧2

≈0

1

𝑢

𝜕

𝜕𝑡
+

𝜕

𝜕𝑥

𝜕

𝜕𝑥
𝑤′ = 0

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑧2
+

𝑁2

𝑢
2 −

1

𝑢

𝜕2𝑢

𝜕𝑧2

ℓ2

𝑤′ = 0

Wave equation

𝑤′ 𝑥, 𝑧 = 𝑊𝑒𝑖 𝑘𝑥𝑥+𝑘𝑧𝑧−𝜔𝑡 ⇒  
𝜔 − 𝑢𝑘𝑥

2 =
𝑁𝑘𝑥

2

𝑘𝑥
2 + 𝑘𝑧

2

ℓ2 = 𝑘𝑥
2 + 𝑘𝑧

2

Dispersion relation

Phase and group velocity 𝑐𝑓𝑘
=

𝜔

𝑘𝑘
; 𝑐𝑔𝑘

=
𝜕𝜔

𝜕k𝑘

𝑐𝑓𝑥
= 𝑢 ±

𝑁

𝑘𝑥
2 + 𝑘𝑧

2
𝑐𝑔𝑥

= 𝑢 ±
𝑁𝑘𝑧

2

𝑘𝑥
2 + 𝑘𝑧

2
3
2

𝑐𝑓𝑧
= 𝑢

𝑘𝑥

𝑘𝑧
±

𝑁𝑘𝑥

𝑘𝑧 𝑘𝑥
2 + 𝑘𝑧

2
𝑐𝑔𝑧

= ∓
𝑁𝑘𝑥𝑘𝑧

𝑘𝑥
2 + 𝑘𝑧

2
3
2

Wave amplitude doesn’t necessarily 

decreases with height. Thus, cgz can 

not be negative (else the wave 

would give its energy from Space). 

The physically correct solution 

corresponds to the lower signs.



Phase and group velocity

𝑐𝑓𝑥
𝑐𝑔𝑥

+ 𝑐𝑓𝑧
𝑐𝑔𝑧

=

= 𝑢 −
𝑁

𝑘𝑥
2 + 𝑘𝑧

2
𝑢 −

𝑁𝑘𝑧
2

𝑘𝑥
2 + 𝑘𝑧

2
3
2

+ 𝑢
𝑘𝑥

𝑘𝑧
−

𝑁𝑘𝑥

𝑘𝑧 𝑘𝑥
2 + 𝑘𝑧

2

𝑁𝑘𝑥𝑘𝑧

𝑘𝑥
2 + 𝑘𝑧

2
3
2

= 𝑢
2

− 𝑢
𝑁𝑘𝑧

2

𝑘𝑥
2 + 𝑘𝑧

2
3
2

− 𝑢
𝑁

𝑘𝑥
2 + 𝑘𝑧

2
+

𝑁

𝑘𝑥
2 + 𝑘𝑧

2

𝑁𝑘𝑧
2

𝑘𝑥
2 + 𝑘𝑧

2
3
2

+ 𝑢
𝑘𝑥

𝑘𝑧

𝑁𝑘𝑥𝑘𝑧

𝑘𝑥
2 + 𝑘𝑧

2
3
2

−
𝑁𝑘𝑥

𝑘𝑧 𝑘𝑥
2 + 𝑘𝑧

2

𝑁𝑘𝑥𝑘𝑧

𝑘𝑥
2 + 𝑘𝑧

2
3
2

= 𝑢
2

− N𝑢
𝑘𝑧

2

ℓ3 −
𝑁𝑢

ℓ
+ 𝑁2

𝑘𝑧
2

ℓ4 + 𝑁𝑢
𝑘𝑥

2

ℓ3 − 𝑁2
𝑘𝑥

2

ℓ4

= 𝑢
2

−
𝑢𝑘𝑧

2

ℓ2 − 𝑢
2

+
𝑢

2
𝑘𝑧

2

ℓ2 +
𝑢

2
𝑘𝑥

2

ℓ2 −
𝑢

2
𝑘𝑥

2

ℓ2 = 0

𝑐𝑓𝑥
= 𝑢 −

𝑁

𝑘𝑥
2 + 𝑘𝑧

2
𝑐𝑔𝑥

= 𝑢 −
𝑁𝑘𝑧

2

𝑘𝑥
2 + 𝑘𝑧

2
3
2

𝑐𝑓𝑧
= 𝑢

𝑘𝑥

𝑘𝑧
−

𝑁𝑘𝑥

𝑘𝑧 𝑘𝑥
2 + 𝑘𝑧

2
𝑐𝑔𝑧

=
𝑁𝑘𝑥𝑘𝑧

𝑘𝑥
2 + 𝑘𝑧

2
3
2

ℓ =
𝑁

𝑢
= 𝑘𝑥

2 + 𝑘𝑧
2

Phase and group velocities 

are perpendicular



General Solution

𝑤′ 𝑥, 0 = 𝑢 0
𝑑ℎ

𝑑𝑥
 𝑤 𝑘𝑥 , 𝑧 = ℱ𝑥 𝑤′ 𝑥, 𝑧

 ℎ 𝑘𝑥 = ℱ𝑥 ℎ 𝑥
𝜕2  𝑤

𝜕𝑧2
+ ℓ2 − 𝑘𝑥

2  𝑤 = 0

 𝑤 𝑘𝑥 , 0 = 𝑖𝑘𝑥𝑢 0  ℎ 𝑘𝑥

𝑤′ 𝑥, 𝑧 = 𝑢 𝑧
𝑑ℎ 𝑥

𝑑𝑥
∗ ℱ𝑘𝑥

−1 𝑒
𝑖 ℓ2−𝑘𝑥

2𝑧



Special cases

• One-layer atmosphere, periodic terrain
– Constant Scorer-parameter

– Vertically evanescent and periodic monochromatic wave

– Wave tilting

• One-layer atmosphere, isolated mountain
– Fourier-transform of terrain height function exists

– Superposition principle holds

– Untrapped wave solution (localized over the mountain)

• Two-layer-atmosphere, periodic terrain
– Two different Scorer-parameters, but constants in each layer

– Reflection from layer boundary

– Resonance (monochromatic trapping) and its necessary condition

• Two-layer atmosphere, isolated mountain
– Continuous and discrete (quantized) trapping

– Waves in the upper layer („pseudo-terrain”)

• Violation of conditions, secondary phenomena
– Rotors (1st and 2nd type), wave breaking, downslope windstorm

– Small-scale turbulence, moist waves, energetics



One layer, periodic terrain

ℎ 𝑥 = 𝐻 sin𝐾𝑥

𝑤′ 𝑥, 0 = 𝑢
𝑑ℎ 𝑥

𝑑𝑥
= 𝑢𝐻𝐾 cos 𝐾𝑥

𝑤′ 𝑥, ∞ = 0 ; 𝑐𝑔𝑧
𝑥, ∞ =  

𝜕𝜔

𝜕𝑘𝑧 𝑥,𝑧=∞

≥ 0

Boundary conditions

𝑤′ 𝑥, 𝑧 = ℜ 𝑊𝑒𝑖 𝑘𝑥𝑥+𝑘𝑧𝑧 ; ℓ2 = 𝑘𝑥
2 + 𝑘𝑧

2

𝑤′ 𝑥, 0 = 𝑊ℜ 𝑒𝑖𝑘𝑥𝑥 = 𝑊 cos 𝑘𝑥𝑥 =! 𝑢𝐻𝐾 cos 𝐾𝑥

𝑊 = 𝑢𝐻𝐾 ; 𝑘𝑥 = 𝐾 → 𝑘𝑧
2 = ℓ2 − 𝐾2

𝑤′ 𝑥, 𝑧 = 𝑢𝐻𝐾 cos 𝐾𝑥 𝑒𝑖 ℓ2−𝐾2𝑧

𝑤′ 𝑥, 𝑧 = 𝑢𝐻𝐾 cos 𝐾𝑥  
cos ℓ2 − 𝐾2𝑧 ℓ2 − 𝐾2 > 0

𝑒− 𝐾2−ℓ2𝑧 ℓ2 − 𝐾2 < 0

Solution



𝐿 = 5𝑘𝑚; 𝐻 = 1𝑘𝑚; 𝑢 = 10
𝑚

𝑠
; 𝑇0 = 300𝐾; 𝛾 = −5

𝐾

𝑘𝑚
; 𝑊0 = 𝑢𝐻𝐾 = 12,566

𝑚

𝑠

𝐾 =
2𝜋

𝐿
= 1,2567

1

𝑘𝑚
; 𝑁 =

𝑔

𝜃

𝑔

𝑐𝑝𝑑
+ 𝛾 = 0,012478𝐻𝑧; ℓ =

𝑁

𝑢
= 1,2478

1

𝑘𝑚

𝑘𝑧
2 = ℓ2 − 𝐾2 = −2,22 ⋅ 10−8; 𝑤 =

𝑊

2
→ 𝑧 = 4650𝑚

Evanescent-periodic threshold: 𝛾 = −4,932
𝐾

𝑘𝑚



𝐿 = 5𝑘𝑚; 𝐻 = 1𝑘𝑚; 𝑢 = 10
𝑚

𝑠
; 𝑇0 = 300𝐾; 𝛾 = 0; 𝑊0 = 𝑢𝐻𝐾 = 12,566

𝑚

𝑠

𝐾 =
2𝜋

𝐿
= 1,2567

1

𝑘𝑚
; 𝑁 =

𝑔

𝜃

𝑔

𝑐𝑝𝑑
+ 𝛾 = 0,017866𝐻𝑧; ℓ =

𝑁

𝑢
= 1,7866

1

𝑘𝑚

𝑘𝑧
2 = ℓ2 − 𝐾2 = +1,61 ⋅ 10−6; 𝐿𝑧 =

2𝜋

𝑘𝑧
= 4950m;

𝛼 = 45,3°; 𝛽 = 51,488°; ℓ2 𝛼 = 𝛽 = 2,694
1

𝑘𝑚



One layer, periodic terrain

Wave tilting

2𝜋

𝐿𝑧

2

= ℓ2 −
2𝜋

𝐿

2

𝐿

𝐿𝑧

2

=
𝐿ℓ

2𝜋

2

− 1

tg 𝛼 =
𝐿

𝐿𝑧
=

𝐿ℓ

2𝜋

2

− 1

Terrain slope

tg 𝛽 =
𝑊

𝑢
= 2𝜋

𝐻

𝐿
0 < tg 𝛼 <! tg 𝛽

Condition for temp. grad.

0 <
𝐿ℓ

2𝜋

2

− 1 <
2𝜋𝐻

𝐿

2𝜋

𝐿

2

< ℓ2 <
2𝜋

𝐿

2

2𝜋
𝐻

𝐿

2

+ 1



Terrain

Terrain slopeWave tilting

StreamlineIn case of too stable layer, 

tilting exceeds terrain slope 

and streamlines intersects 

each other (they even go 

inside the terrain)



One layer, isolated mountain

𝑤′ 𝑥, 0 = 𝑢
𝑑ℎ

𝑑𝑥
 𝑤 𝑘𝑥 , 𝑧 = ℱ𝑥 𝑤′ 𝑥, 𝑧

 ℎ 𝑘𝑥 = ℱ𝑥 ℎ 𝑥
𝜕2  𝑤

𝜕𝑧2
+ ℓ2 − 𝑘𝑥

2  𝑤 = 0

 𝑤 𝑘𝑥 , 0 = 𝑖𝑘𝑥𝑢 ℎ 𝑘𝑥

𝑤′ 𝑥, 𝑧 = 𝑢
𝑑ℎ 𝑥

𝑑𝑥
∗ ℱ𝑘𝑥

−1 𝑒
𝑖 ℓ2−𝑘𝑥

2𝑧



ℎ 𝑥 =
𝐻𝐿2

𝑥2 + 𝐿2
; 𝐻 = 1𝑘𝑚; 𝐿 = 5𝑘𝑚

𝛾 = 0; 𝑢 = 10
𝑚

𝑠
; 𝑇 = 300𝐾



Two layer, periodic terrain

𝑤𝐿
′ 𝑥, 𝑍

𝑢𝐿 𝑍
=

𝑤𝑈
′ 𝑥, 𝑍

𝑢𝑈 𝑍

• Constant, but different Scorer-parameters in the 

two layer
– Note the variables with an L index in the lower layer, and 

an U index in the upper layer

• Phenomena similar to those known in optics
– Reflection at the upper boundary in the lower layer

– Transmission into the upper layer (but its treated as a 

one-layer with a terrain made of the layer boundary)

• Boundary condition at layer boundary (where z=Z)
– Reflection coefficient (r)



Two layer, periodic terrain

• Wave reflection
– Vertical group velocity changes sign

– At layer boundary r<1, at ground r=1

– The sum of them results in ‘chessboard pattern’

– Infinitely many reflections happen

𝑤𝑛
′ 𝑥, 𝑧 = 2𝑊𝑛𝑒𝑖𝐾𝑥 cos ℓ2 − 𝐾2𝑧

𝑤′ 𝑥, 𝑧 =  

𝑛=1

∞

𝑤𝑛 𝑥, 𝑧 =  

𝑛=1

∞

2𝑊𝑛𝑒𝑖𝐾𝑥 cos ℓ2 − 𝐾2𝑧

𝑊𝑛 = 𝑟𝑊𝑛−1; 𝑊1 = 2𝑟𝑊0

𝑊 =  

𝑛=1

∞

𝑊𝑛 =
𝑊1

1 − 𝑟
=

2𝑟

1 − 𝑟
𝑊0

To hold lower boundary condition: 2𝑟

1 − 𝑟
= 1 → 𝑟 =

1

3



𝐿 = 5𝑘𝑚; 𝐻 = 1𝑘𝑚; 𝛾 = 0; 𝑇 = 300𝐾; 𝑢 = 10
𝑚

𝑠
; 𝑟 =

1

3

𝐿𝑧 = 4950𝑚;𝑊 = 25,133
𝑚

𝑠



Two layer, periodic terrain

• The reflected wave
– Waves evanescent in the upper layer are reflected fully 

from the layer boundary in the lower layer

– Full reflection (r=1) results formally in infinite amplitude
• Violation of considerations (eg. that perturbation is small etc) 

and lower boundary condition

• Secondary phenomena appear which keep the amplitude finite 

by dissipating some energy from the wave

– Advantages of the infinite amplitude:
• Every mode with r<1 (including W0) can be neglected

• Reflection coefficient depends also on the local amplitude (or 

i.e. the phase) at the layer boundary (the local relative to the full 

amplitude appears as a multiplicator)

– Full reflection is possible only when a constraint of 

Scorer-parameters holds



Two layer, periodic terrain

• Conditions of full reflection (resonance)
– Let r be 1

𝑊𝑛𝐿
cos 𝑘𝑥𝐿

𝑥 𝑒𝑖𝑘𝑧𝐿𝑍 = 𝑊𝑛𝑈
cos 𝑘𝑥𝑈

𝑥 𝑒𝑖𝑘𝑧𝑈𝑍

𝑊𝑛𝑈
= 𝑊𝑛−1𝐿

1 − 𝑟 = 2𝑢𝐿𝐻𝐾𝑟𝑛−1 1 − 𝑟

𝑊𝑛𝐿
= 2𝑢𝐿𝐻𝐾𝑟𝑛

𝑘𝑥𝑈 = 𝑘𝑥𝐿 = 𝐾; 𝑘𝑥
2 + 𝑘𝑧

2 = ℓ2

2𝑢𝐿𝐻𝐾𝑟𝑛 cos𝐾𝑥 𝑒
𝑖 ℓ𝐿

2−𝐾2𝑍
= 2𝑢𝑈𝐻𝐾𝑟𝑛−1 cos 𝐾𝑥 𝑒

𝑖 ℓ𝑈
2 −𝐾2𝑍

1

𝑟
− 1 =

𝑢𝑈

𝑢𝐿

cos ℓ𝐿
2 − 𝐾2𝑍

cos ℓ𝑈
2 − 𝐾2𝑍

𝑟 = 1 ⇒ cos ℓ𝐿
2 − 𝐾2 = 0 → 𝐾2 = ℓ𝐿

2 − 𝑗 +
1

2

𝜋

𝑍

2



Two layer, periodic terrain

• Conditions of full reflection (resonance)
– Let the wave be evanescent in the upper layer

ℓ𝑈
2 − 𝐾2 < 0

ℓ𝑈
2 − ℓ𝐿

2 − 𝑗 +
1

2

𝜋

𝑍

2

< 0

⇓

ℓ𝐿
2 − ℓ𝑈

2 > 𝑗 +
1

2

2
𝜋2

𝑍2

ℓ𝐿
2 − ℓ𝑈

2 >
𝜋

2𝑍

2



Two layer, isolated mountain

• Only a multiplier containing the reflection 

modifies the one-layer solution
– Reflection can depend on the wavenumber

 𝑤 𝑘𝑥, 𝑧 =
2𝑟 𝑘𝑥

1 − 𝑟 𝑘𝑥
+ 1 𝑖𝑘𝑥𝑢 𝑧  ℎ 𝑘𝑥

𝑤′ 𝑥, 𝑧 = 𝑢 𝑧
𝑑ℎ 𝑥

𝑑𝑥
∗ ℱ𝑘𝑥

−1 2𝑟 𝑘𝑥

1 − 𝑟 𝑘𝑥
+ 1 cos ℓ2 − 𝑘𝑥

2𝑧



Two layer, isolated mountain

• Applying conditions of full reflection
– Fourier-integral only between Scorer-params.

𝑤′ 𝑥, 𝑧 =
𝑢 𝑧

2𝜋

𝑑ℎ 𝑥

𝑑𝑥
∗  

𝑘𝑥=ℓ𝑈

ℓ𝐿
2𝑟 𝑘𝑥

1 − 𝑟 𝑘𝑥
+ 1 cos ℓ𝐿

2 − 𝑘𝑥
2𝑧 ⋅ 𝑒𝑖𝑘𝑥𝑥𝑑𝑘𝑥

=
𝑢 𝑧

2𝜋
 

−∞

∞
𝑑ℎ 𝑥′

𝑑𝑥′  

ℓ𝑈

ℓ𝐿
2𝑟 𝑘𝑥

1 − 𝑟 𝑘𝑥
+ 1 cos ℓ𝐿

2 − 𝑘𝑥
2𝑧 ⋅ 𝑒𝑖𝑘𝑥 𝑥−𝑥′

𝑑𝑘𝑥 𝑑𝑥′



ℎ 𝑥 =
𝐻𝐿2

𝑥2 + 𝐿2

𝐻 = 1𝑘𝑚
𝐿 = 2,5𝑘𝑚
Z = 4km
𝑇 𝑧 = 0 = 300𝐾
𝛾𝐿 = 0

𝛾𝑈 = −4.88
𝐾

𝑘𝑚

𝑢𝐿 = 10
𝑚

𝑠

𝑢𝑈 = 30
𝑚

𝑠

𝑟 = 𝑓 𝑥 =
1

3
cos2 ℓ𝐿

2 − 𝑘𝑥
2 𝑍



Two layer, isolated mountain

• Resonance, quantization
– Reflection is full only when the local amplitude on the 

layer boundary is maximal (i.e. their phase there is jπ).

𝑗
𝐿𝑧𝐿

2
= 𝑍 → 𝑘𝑧𝐿𝑍 = 𝑗𝜋

ℓ𝑈
2 < 𝑘𝑥𝑗

2 = ℓ𝐿
2 −

𝑗𝜋

𝑍

2

< ℓ𝐿
2

0 < 𝑗 <
𝑍

𝜋
ℓ𝐿

2 − ℓ𝑈
2

𝑗 > 0 ⇒ ℓ𝐿
2 − ℓ𝑈

2 >
𝜋

𝑍

2

𝑅 ≔
2𝑟𝑗

1 − 𝑟𝑗
+ 1 < ∞∀𝑗

𝑤′ 𝑥, 𝑧 =
𝑢 𝑧 𝑅

2𝜋
 

−∞

∞
𝑑ℎ 𝑥′

𝑑𝑥′
 

ℓ𝑈<𝑘𝑥𝑗

𝑘𝑥𝑗<ℓ𝐿

cos
𝑗𝜋𝑧

𝑍
𝑒

𝑖 ℓ𝐿
2−

𝑗𝜋
𝑍

2

𝑥−𝑥′

𝑑𝑥′

𝑤′ 𝑥, 𝑧 =
𝑢 𝑧 𝑅

2𝜋
 

−∞

∞
𝑑ℎ 𝑥′

𝑑𝑥′  

𝑗=1

𝑍
𝜋 ℓ𝐿

2−ℓ𝑈
2

cos
𝑗𝜋𝑧

𝑍
𝑒

𝑖 ℓ𝐿
2−

𝑗𝜋
𝑍

2

𝑥−𝑥′

𝑑𝑥′



ℎ 𝑥 =
𝐻𝐿2

𝑥2 + 𝐿2
; 𝐻 = 1𝑘𝑚; 𝐿 = 2,5𝑘𝑚; Z = 4km;𝑇 𝑧 = 0 = 300𝐾

𝛾𝐿 = 0; 𝛾𝑈 = −4.88
𝐾

𝑘𝑚
; 𝑢𝐿 = 10

𝑚

𝑠
; 𝑢𝑈 = 30

𝑚

𝑠
; 𝑅 = 1;

ℓ𝐿
2 = 3,2

1

𝑘𝑚2
; ℓ𝑈

2 = 0,177
1

𝑘𝑚2
; 𝐿𝑥1 = 3,92𝑘𝑚; 𝐿𝑥2 = 7,38𝑘𝑚



Two layer, isolated mountain

• The layer boundary, affected by the lower layer 

waves, behaves as a ‘terrain’ for the upper layer

𝑤𝑈
′ 𝑥, 𝑍 =

𝑢𝑈

𝑢𝐿
𝑤𝐿

′ 𝑥, 𝑍 →  𝑤𝑈 𝑘𝑥, 𝑍 =
𝑢𝑈

𝑢𝐿
 𝑤𝐿 𝑘𝑥, 𝑍

𝑤𝑈
′ 𝑥, 𝑧 = 𝑢𝑈 𝑧 𝑅

𝑑ℎ 𝑥

𝑑𝑥
∗ ℱ𝑘𝑥

−1 cos ℓ𝐿
2 − 𝑘𝑥

2𝑍 ⋅ 𝑒
𝑖 ℓ𝑈

2 −𝑘𝑥
2 𝑧−𝑍

𝑤𝑈
′ 𝑥, 𝑧 =

𝑢𝑈 𝑧 𝑅

2𝜋
 

−∞

∞
𝑑ℎ 𝑥′

𝑑𝑥′
 

𝑗=1

𝑍
𝜋 ℓ𝐿

2−ℓ𝑈
2
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Theoretical results
• Scorer-parameter represents the wavenumber of mountain waves and 

characterizes their onset.

• Over a periodic terrain, the waves are tilted upstream.

• In a one layer atmosphere over an isolated mountain, the waves are 

localized over the mountain.

• Trapped and untrapped waves can exist in the lower layer of a two 

layer atmosphere.

• Trapped waves are those which are evanescent in the upper layer.

• For trapping in a two layer atmosphere, the difference between the 

Scorer-parameters has to exceed a threshold which decreases with the 

depth of the lower layer.

• Number of trapped wave modes are finite, especially usually 1-2, but 

can be several more if the stable (trapping) layer is several kms deep.



Case study: 2017.10.13. 11UTC (using AROME model)



Terra/MODIS archive: lance.modaps.eosdis.nasa.gov

2017.10.13. 9:50 UTC















Summary, further plans

• Mountain waves are the only phenomena which can cause 

vertical streaming nearly as strong as convection

• Forecasting waves (based on Scorer-param.) can be easy

• Forecasting wave turbulence is very difficult
– Lack of complete theory (NWP modelling took place in ‘70s).

– Major underestimation of turbulence in NWP models.

• Risk for glider pilots
– Waves are most useful for soaring but the turbulence (with that it is 

often CAT and can not be forecasted) put pilots on high danger 

when flying in waves.

• Theoretical works are planned for describing free-

atmospheric turbulence using AROME model.
– Results of recent numerical studies on TKE modelling is under 

investigation in AROME to study they performance in mountain 

wave situations (results are still uncertain for jet-related CAT).

Thank you for your attention!



Acknowledgements

To Viktória Homonnai (OMSZ) for

providing us AROME NWP and TKE data

and Máté Mester (OMSZ) for sharing us

his experiencies and pilot point of view


