

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

Scatterometer Winds for NRT Support to Mesoscale Forecasting

Ad.Stoffelen@knmi.nl

Leader Active Remote Sensing Group Satellite Observations, KNMI

EUMETSAT OSI SAF
EU Copernicus Marine Core Services
EUMETSAT NWP SAF

Scatterometer Winds for NRT Support to Mesoscale Forecasting

Introduction

Scatterometer wind observations

NWP model winds

Mesoscale forecasting

Deaths and economic losses by hydrometeorological hazards

Reported economic losses by decade by hazard type (1971–2010)

(in US\$ billion, adjusted to 2012)

Extreme temperature

Weather Forecasts keep improving

Observations lead weather models

New observations become available continuously

Observations and Models

WMO OSCAR data base https://www.wmosat.info/oscar/variables/view/181

Timeliness

Coverage

Conf

Source 0

Requirements defined for Wind speed over the surface (horizontal) (8)

App Area

This tables shows all related requirements. For more operations/filtering, please consult the full list of Requirements Note: In reading the values, goal is marked blue, breakthrough green and threshold orange

Layer

Id A Variable

					decade	Res	Res	Сус			Level	Date	
<u>318</u>	Wind speed over the surface (horizontal)	Near Surface	Global NWP	0.5 m/s 1.5 m/s 2 m/s		15 km 100 km 250 km		60 min 6 h 12 h	6 min 30 min 6 h	Global land	firm	2009-02-10	John Eyre
<u>319</u>	Wind speed over the surface (horizontal)	Near Surface	Global NWP	0.5 m/s 1.5 m/s 2 m/s		15 km 100 km 250 km		60 min 6 h 12 h	6 min 30 min 6 h	Global ocean	firm	2009-02-10	John Eyre
<u>389</u>	Wind speed over the surface (horizontal)	Near Surface	High Res NWP	0.5 m/s 1 m/s 3 m/s		0.5 km 5 km 20 km		30 min 60 min 3 h	15 min 30 min 2 h	Global land	firm	2011-08-04	T Montmerle
390	Wind speed over the surface	Near	High Res NWP	0.5 m/s		0.5 km		30 min	15 min	Global ocean	firm	2011-08-04	T Montmerle

Hor

Ver

Obs

3 h

60 min

Stability /

Uncertainty

3 m/s

<u>319</u>	Wind speed over the surface (horizontal)	Near Surface	Global NWP	0.5 m/s 1.5 m/s 2 m/s	15 km 100 km 250 km	60 min 6 h 12 h	6 min 30 min 6 h	Global ocean	firm	2009-02-10	John Eyre
389	Wind speed over the surface (horizontal)	Near Surface	High Res NWP	0.5 m/s 1 m/s 3 m/s	0.5 km 5 km 20 km	30 min 60 min 3 h	15 min 30 min 2 h	Global land	firm	2011-08-04	T Montmerle
390	Wind speed over the surface (horizontal)	Near Surface	High Res NWP	0.5 m/s 1 m/s 3 m/s	0.5 km 5 km 20 km	30 min 3 h 12 h	15 min 30 min 2 h	Global ocean	firm	2011-08-04	T Montmerle
<u>455</u>	Wind speed over the surface (horizontal)	Near Surface	Nowcasting / VSRF	1 m/s 1.4 m/s 3 m/s	1 km 5 km 20 km	5 min 15 min 60 min	5 min 15 min 60 min	Global land	reasonable	2013-04-08	P. Ambrosetti
<u>456</u>	Wind speed over the surface (horizontal)	Near Surface	Nowcasting / VSRF	1 m/s 1.4 m/s	5 km 10 km	15 min 30 min	15 min 30 min	Global ocean	firm	2013-04-08	P. Ambrosetti

50 km

Needed time coverage of wind data

- Wind information at 12:00 from OSCAT in 2013 appears fully complement-ary to wind information at 9:30 from ASCATs in global NWP
- Fly a wind sensor every 3 hours

Scatterometer Winds for NRT Support to Mesoscale Forecasting

Introduction

Scatterometer wind observations

NWP model winds

Mesoscale forecasting

ASCAT scatterometer

Satellite Wind Services

24/7 Wind services (OSI SAF)

- Constellation of satellites
- High quality winds, QC
- Timeliness 30 min. 2 hours
- Service messages
- QA, monitoring
- Software services (NWP SAF)
 - Portable Wind Processors
 - Weather model comparison

Organisations involved: KNMI, EUMETSAT, EU, ESA, NASA, NOAA, ISRO, SOA, WMO, CEOS, ..

 Users: NHC, JTWC, ECMWF, NOAA, NASA, NRL, BoM, UK MetO, M.France, DWD, CMA, JMA, CPTEC, NCAR, NL, . . .

More information:

www.knmi.nl/scatterometer

Wind Scatterometer Help Desk

Email: scat@knmi.nl

CEOS Ocean Vector Surface Winds Virtual Constellation (OSVW-VC) Current status and outlook – NRT data access

Source: WMO OSCAR database and direct interactions with agencies

Ocean Vector Surface Winds Constellation Local time coverage assessment (ground track) - NRT data access

Design Life Extended Life
Operating

Design Life Extended Life

Approved

Source: WMO OSCAR database and direct interactions with agencies

Proposed

Ocean and Sea Ice SAF

Wind Processing Centre

GO TO
OSI SAF CENTRAL
WEB SITE

OSI SAF multi-platform product viewer

Background information

> Home OSI SAF Wind Centre

OSI SAF Wind Products

- > ASCAT-A 25-km winds Operational status
- > ASCAT-A 12.5-km winds Discontinued status
- ASCAT-A Coastal winds Operational status
- ASCAT-B 25-km winds Operational status
- > ASCAT-B Coastal winds Operational status
- RapidScat 25-km 2hrs Operational status
- > RapidScat 25-km 3hrs Operational status
- RapidScat 50-km 2hrs Operational status
- RapidScat 50-km 3hrs Operational status
- Oceansat-2 50-km winds Discontinued status
- Reprocessed SeaWinds L2 winds CDR released
- > Wind Products Processing Status
- > Archived wind and stress products

Other Wind Services at KNMI

- > ASCAT-A 25-km winds (EARS)
 Operational status
- ASCAT-A Coastal winds (EARS) Operational status

RE: SCATTEROMETER VISUALIZATION AT KNMI

by kleoniki tsioutra - Thursday, 7 July 2016, 7:40 AM

RE: SCATTEROMETER VISUALIZATION AT KNMI

by Dionysia kotta - Tuesday, 5 July 2016, 4:36 PM

Dear Ad,

I found the website you recommended to us very interesting. It would be very useful to Greek forecasters.

Thank you for all the information you gave us during the training course.

RE: SCATTEROMETER VISUALIZATION AT KNMI

by Maja Jeromel - Thursday, 7 July 2016, 6:00 PM

Hi Ad,

great operational product! I really like the "Go North", "Go South" etc. options - used it right away :-) I also like "Prod views!

And last, but not least - I found 7.7.2016 is a good day for the Adriatic Sea, even for the norhernmost part :- D

Dear Ad,

this is very useful, I like it!!!!

Thanks a lot for this information

Dionysia

ASCAT-A: 20180915 02:30Z lat lon: 16.0 12

projects.knmi.nl/scatterometer/tile_prod/

ASCAT-B/A

- Broader coverage
- Few rejected (black)
- Some (reddish) differ from ECMWF (green)
- Closer to coast
- ASCAT-C launches next week
- ASCAT-A+B+C have the same coverage as ScatSat or HY-2B

Stress-equivalent wind, U10S

- Radiometers/scatterometers measure ocean roughness
- Ocean roughness consists in small (cm) waves generated by air impact and subsequent wave breaking processes; depends on gravity, air/water mass density, water viscosity, surface tension s, and e.m. sea properties (assumed constant)
- Air-sea momentum exchange is described by $\tau = \rho_{air} \, u_* \, u_*$, the stress vector; depends on air mass density ρ_{air} , friction velocity vector u_*
- Stress-equivalent winds, $u_{10\rm S}$, depend only on au , and are currently used for backscatter geophysical model functions (GMFs)
- Surface layer winds (e.g., u_{10}) depend on u_* , atmospheric stability, surface roughness and the presence of ocean currents (drag)
- Buoy and NWP winds must be corrected for ocean currents, air stability, and air mass density before comparison to scatterometer wind, u_{10S}
- Correct for SST at Ku band

Triple Collocation

Triple collocation result

Scatterometer Scale Error SD	U m/s	V m/s
Buoy	1.21±0.02	1.23±0.02
ASCAT	0.69±0.02	0.82±0.02
ECMWF	1.54±0.02	1.55±0.02
Representativeness (r²)	0.78±0.02	1.00±0.02

ECMWF Scale Error SD	U m/s	V m/s
Buoy	1.44±0.02	1.59±0.02
ASCAT	1.05±0.02	1.29±0.02
ECMWF	1.32±0.02	1.18±0.02

Trend	U m/s	V m/s		
ASCAT	0.99	0.99		
ECMWF	0.97	0.96		

- ASCAT winds are very accurate
- ASCAT error SD is smaller than representativeness vector error SD
- Buoy errors appear large (current, wind variability)
- ECMWF winds appear smooth and biased low on average
 - In extreme weather much larger deviations will occur

Vogelzang et al., JGR, 2011

SeaWinds ScatSat-1 OceanSat-2

Triple collocation	Scatter	ometer	Bu	oys	ECMWF		
in ms ⁻¹	ϵ_{u}	εν	ϵ_{u}	ϵ_{v}	٤ _u	ϵ_{v}	
25 km ScatSat-1	0.77	0.60	1.37	1.40	1.10	1.13	
25 km Oceansat-2	0.80	0.71	1.44	1.45	1.33	1.40	
25 km SeaWinds	0.64	0.54	1.39	1.41	1.28	1.35	
50 km ScatSat-1	0.60	0.44	1.45	1.50	0.99	1.00	
50 km Oceansat-2	0.61	0.48	1.53	1.54	1.20	1.29	
50 km SeaWinds	0.46	0.40	1.50	1.49	1.20	1.28	

- ERAint: SeaWinds (1999 2009) en Oceansat-2 (2009 2014)
- OPS (clearly better quality): All ScatSat-1 v113
- ScatSat-1 quality well within requirements (~1.4 m/s)
- Better than OceanSat-1 quality
- Buoy quality best at smallest scale (25 km), NWP at largest scale (50 km)

Quality Control for Ku Band

- > Areas with significant Rain (large squares) effectively detected
- > Frontal and low-pressure centre areas effectively removed
- Vast majority of spatially consitent winds are accepted (green arrows)

QC: Which error is acceptable?

- ➤ We can produce winds with SD of buoy-scatterometer difference of 0.6 m/s, but would exclude all high-wind and dynamic air-sea interaction areas
- ➤ The winds that we reject right now in convective tropical areas are noisy (SD=1.84 m/s), but generally not outliers!
- What metric makes sense for QC trade-off?

Monitoring of each product

Convection

ASCAT-A and ASCAT-B come together

Wind front

Wind front 2DVAR analysis

Default setting:

- Gaussian structure function
- > Fixed O/B errors

New setting:

- > Empirical structure function
- > Flexible O/B errors

Wind front selections

> Fixed O/B errors

> Flexible O/B errors

RapidScat

- Static background error correlations based on ASCAT
- Usually similar, but
- Larger increments w.r.t background
- More mesoscale structure
- Lower MLE
- Better wind direction verification against buoys
- Works also for OSCAT

Case 01-01-2015 - comparison

Scatterometer winds

- Many more will appear soon! (HY2B, CFOSAT, ASCAT-C, OceanSat, WindRad)
- Represent the mean WVC wind
- Are provided as stress-equivalent (neutral) winds
- Verify very well with NWP model
- Verify very well with buoys
- Show spectra close to that theoretically expected for 3D turbulence for scales < 500 km
- Spatial plots show small-scale features in line with these three features: PBL rolls, moist and dry convection, subsidence, air-sea interaction
- Are screened for land, sea ice and rain
- Winds > 30 m/s are difficult to measure/calibrate
- Are ambiguous

Scatterometer Winds for NRT Support to Mesoscale Forecasting

Introduction

Scatterometer wind observations

NWP model winds

Mesoscale forecasting

Global Circulation Models

- Used for transient weather prediction and climate scenarios
- ~ 100 x 1000² boxes with ~10 variables (p, T, u, v, w, CC, H2O+fase, O3, ..)
- Interaction between boxes and variables, new state every ~15 minutes; 100x a day
- Interaction with ocean and land surfaces
- Largest available supercomputers are used

ECMWF OPS improves over time

- Variances on scales < 200 km only
- Scatterometer O variance under 200 km constant
- < 200-km variance B increases to 80% (u), resp. 60% (v) of O
- O-B decreases, particularly for v, thus reducing B error

Bias patterns with NWP

- Systematic wrong ocean forcing in the tropics
- Violates BLUE in data assimilation systems (DAS)
- Similar patterns every day, due to convection, parameterisation, ocean current
- Correct biases before DAS
- Correct ocean forcing in climate runs
- Investigate
- Correct NWP for

From U10S to stress: drag

- Stress-equivalent winds are computed for validation of scatterometer wind vectors: independent of atmospheric stratification and incl. air mass density
- Obtain drag to compute stress
- Is the NWP model drag correct? If not, speed biases occur!

Wind Speed

DJF

ASCAT

MAM

Anomaly (ASCAT-NWP)

Estimated B error variances

ECMWF Ensemble Data Assimilation (EDA background error)

ASCAT-derived ECMWF background error by triple collocation in QC classes

The structure and location of ECMWF errors is not well resolved in EDA

Tropical variability

- Dry areas reasonable
- NWP models lack air-sea interaction in rainy areas
- ASCAT scatterometer does a good job near rain
- QuikScat, OSCAT and radiometers are affected by rain droplets

Portabella et al., Lin et al.

Lack of cross-isobar flow in NWP

QuikSCAT vs model wind dir Stratify w.r.t. Northerly, Southerly wind direction. (Dec 2000 – Feb 2001)

- Large effect warm advection
- Small effect cold advection
- Similar results for NCEP

A. Brown et al., 2005

I. Sandu et al., ECMWF (2013)

Does Dynamical Downscaling With Regional Climate Models add Value to Surface Marine Wind Speed From Reanalyses?

Jörg Winterfeldt^{1*}, Ralf Weisse¹, Matthias Zahn¹

¹Institute of Coastal Research, GKSS Research Centre, Geesthacht, Germany

*joerg.winterfeldt@gkss.de

Simulations with RCMs REMO and CLM: (available from Cast Dat Database

- Three hindcasts with RCMs REMO (Jakob and Podzun, 1997) and CLM (Böhm et al. 2006)
- Initialization and forcing at lateral boundaries: NCEP/NCAR-Reanalysis (NRA), ~1.875° resolution,
- •SN-REMO & CLM hindcasts are additionally forced by spectral nudging (von Storch et al., 2000)

Hindcast	STD-REMO (Standard)	SN-REMO	CLM
Based on:	EM	EM	LM
	Hydrostatic	Hydrostatic	Non-hydrostatic
Forcing:	NRA	NRA	NRA
Spectral Nudging:	No	Yes	Yes
Resolution:	0.5°	0.5°	0.44°

- For that purpose a gridded QuikSCAT Level 2B 12.5 km swath (L2B12) data set is produced on SN-REMO grid (rain flagged L2B12 data discarded) co-location with SN-REMO: QuikSCAT wind speed retrieval max. 12.5 km and +/- 10 min from SN-REMO grid point / time step
- Modified BSS = $\begin{cases} 1 \sigma_F^2 \sigma_R^{-2} & \text{if } \sigma_F^2 \le \sigma_R^2 \\ \sigma_R^2 \sigma_F^{-2} 1 & \text{if } \sigma_F^2 > \sigma_R^2 \end{cases}$
- "Forecast" F: SNREMO, reference "forecast" R: NRA, predictand/observation: gridded QuikSCAT L2B12 data

Using observations in NWP

- Use of short-range forecast containing all observed information from the past
- One new observation influences a large area
- A change in the wind field by an observation implies a change in the mass field (balance mass/wind)
- Relatively few 4D
 observations determine the
 weather evolution
- Small scales remain the most difficult to determine due to the limited global observing system

HARMONIE from ECMWF

- HSCAT scatterometer 50 km
- HARMONIE effective resolution 25 km, grid 2.5 km

(m/s)

	HSCAT	(23.961 c	collocations);	$\Delta t = -0.29; \overline{\Delta}$	t = 0.85
	(o-b)	-0.46	1.61	-0.24	1.57
Temporal interpolation:	$(o-b_t)$	-0.46	1.36	-0.22	1.29
+ spatial averaging:	$(o-\bar{b}_t)$	-0.45	1.25	-0.22	1.18
+ spatial averaging:	$(o-\bar{b}_t)$	-0.45	1.25	-0.22	_

bias u_{10m}

> ECMWF:

	t_f	bias u_{10m}	stdev u_{10m}	bias v_{10m}	stdev v_{10m}
HSCAT	5.6	-0.11	1.09	0.05	1.15

stdev u_{10m}

bias v_{10m}

stdev v_{10m}

- ➤ ECMWF 6-hour forecast better than matched 50-km scale timeinterpolated HARMONIE background
- ➤ ECMWF resolution is ~150 km over the open ocean
- ➤ Deterministic resolution HARMONIE ≈ ECMWF over sea

Mesoscale Data Assimilation Strategy

Model winds

- Are initialized from observations in a DAS
- Are improving and are the forecasters' reference
- New observations are not used in models (up to 12 hour lag)
- A lot can happen in 12 hours on the mesoscale
 - Differences between new and timely observations and short-range model forecasts affect the forecasters warnings, either current ones or in future
 - Lack true mesoscale variability, since poorly observed in 4D
 - Are not so good in the tropics or elsewhere near convection (e.g., polar lows)
 - Have some systematic wind biases (in stable air, ocean currents, diurnal cycle, ...)

Scatterometer Winds for NRT Support to Mesoscale Forecasting

Introduction

Scatterometer wind observations

NWP model winds

Mesoscale forecasting

Scatterometer

 Improved forecasts of tropical hurricanes

Isaksen & Stoffelen, 2000

No ERS Scatterometer

With ERS

Mainly by improved vertical projection in 4D-VAR

Rita

Spatial representation

- We estimate area-mean (WVC) winds using the empirical GMFs
- 25-km areal winds are less extreme than 10-minute sustained in situ winds (e.g., from buoys)
- So, extreme buoy winds should be higher than extreme scatterometer winds (allow for gustiness factor)
- Extreme global NWP winds are again somewhat lower due to lacking resolution; all have different PDFs!

Storm surge Delfzijl 1/11/'06 4Z 31/10/'6

NWP Impact @ 100 km

29 10 2002

Storm near

HIRLAM
misses wave;
SeaWinds
should be
beneficial!

Missed wave train in QuikScat

Soil Water Index

Vegetation and rain too

European Space Agency

Further references

- scat@knmi.nl
 - Registration for data, software, service messages
 - Help desk
- EUMETCAST, RMDCN, KNMI FTP
- www.knmi.nl/scatterometer
 - Multiplatform viewer, tiles!
 - Status, monitoring, validation
 - User Manual
- EUMETrain forecasters forum
- NWP SAF monitoring www.metoffice.gov.uk/research/interproj/nwpsaf/monitoring.html
- Copernicus Marine Environment Monitoring Service marine.copernicus.eu/

Training/interaction

- Training Course Applications of Satellite Wind and Wave Products for Marine Forecasting vimeo.com/album/1783188 (video)
- Forecasters forum training.eumetsat.int/mod/forum/view.php?f=264
- Xynthia storm case www.eumetrain.org/data/2/xynthia/index.htm
- EUMETrain ocean and sea week eumetrain.org/events/oceansea_week_2011.html (video)
- NWP SAF scatterometer training workshop nwpsaf.eu/site/software/scatterometer/
- Use of Satellite Wind & Wave Products for Marine Forecasting training eumetsat.int/course/category.php?id=46 and others
- Satellite and ECMWF data vizualisation eumetrain.org/eport/smhi_12.php?
- MeteD/COMET training module
 www.meted.ucar.edu/EUMETSAT/marine_forecasting/

Ocean references

- CMEMS, marine.copernicus.eu/
- PODAAC, podaac.jpl.nasa.gov/
- eSurge, www.storm-surge.info/
- MyWave
- 2016 scatterometer conference, www.eumetsat.int/Home/Main/Satellites/Metop/index.htm?l=en
- · IOVWST, coaps.fsu.edu/scatterometry/meeting/

- Still new satellites with new instruments
- Are they all useful for nowcasting?
- What observations are needed?

Can we still improve meteorology?

Greg.J. Tripoli, Un. Wisconsin

Cyclone SH, 2DVAR analyses

Default setting:

- > Gaussian structure function
- Fixed O/B errors

New setting:

- Empirical structure function
- ➤ Flexible O/B errors

Cyclone SH, selected solutions

Default setting:

- Gaussian structure function
- > Fixed O/B errors

New setting:

- > Empirical structure function
- > Flexible O/B errors

Statistics

QC-ed 2-solution cases with |MLE₁|<1

- New ASCAT winds fit buoys and ECMWF better
- New 2Dvar analysis fits ASCAT and buoys much better, but ECMWF worse

		CMWF-buoy comparison nean buoy winds)		
	ASCAT vs ECMWF	ASCAT vs buoy point wind	N	
Default	2.19	1.74	5034	
New	2.17	1.71		

	ASCAT-ECMWF-buoy comparison (mean buoy winds)			
	2DVAR vs ECMWF	2DVAR vs buoy point wind	2DVAR vs ASCAT	N
Default	1.85	1.94	1.17	5034
New	2.00	1.76	0.74	

Lake Victoria

- 8 Dec 2016
- ASCAT-A
- Little wind in ECMWF (green)
- 25 knots in ASCAT (red)
- Moist convection

Lake Victoria

- 8 Dec 2016
- ASCAT-B,50 min later
- Little wind in ECMWF (green)
- 25 knots in ASCAT (red)
- Moist convection
- Messy!

- Convergence is well visible in ASCAT and precedes precip. by 30 minutes
- Divergence too but its peak coincides with rain peak
- Shear areas are also well visible in voriticity
- These patterns do not appear in global NWP