

New capabilities with high resolution cloud micro-structure facilitated by MTG 2.3 um channel

Author:
Daniel Rosenfeld
The Hebrew University of Jerusalem (HUJ) daniel.rosenfeld@huji.ac.il

Slide 1_{9} November 2016, v1.0

Prof. Daniel Rosenfeld

The Hebrew University of Jerusalem, Israel

Daniel.rosenfeld@Huji.ac.il

Areas of specialty: Cloud-aerosol interactions, precipitation and climate. Severe convective storms. Remote sensing of clouds.

How can we detect from space the phase and size of microscopic cloud particles?

Slide 3

Channel 4, $3.9 \mu \mathrm{~m}$, absorbs even more solar radiation than Channel 3, $1.6 \mu \mathrm{~m}$. Ice absorbs more strongly than water at $3.9 \mu \mathrm{~m}$.

Scattering occurs on the drop surface, \sim radius 2

Absorption occurs inside The drop volume,
\sim radius 3

Definition of
Effective Radius ($\mathrm{r}_{\text {eff }}$)

Sum of volumes / sum of surface areas
of the droplets in the measured cloud volume

Ship Track Formation

Ship Track Formation

\qquad
(4)
(4)
5 2
6
6
2
2

(4)
(4)
(4)
(a)

.

(1)

(4)

A: The cloud drops are small, no rain.

 B: The cloud drops are large, probably raining.

Large ice crystal collects small supercooled cloud drops

Problem: Ice cloud looks like water cloud with large drops!
$0.8 \mu \mathrm{~m}$
3.9r $\mu \mathrm{m}$
$10.8 \mu \mathrm{~m}$

Ci

Cold cloud with small supercooled drops: Low T \square +Visibly Bright \square +Small Drops $\square=$ Cold cloud with large ice crystals: Low T $\square+$ Visibly Bright $\square+$ Large Ice $\square=\square$
$0.8 \mu \mathrm{~m}$
3.9r $\mu \mathrm{m}$
$10.8 \mu \mathrm{~m}$

$0.8 \mu \mathrm{~m}$
3.9r $\mu \mathrm{m}$ $10.8 \mu \mathrm{~m}$

$0.8 \mu \mathrm{~m}$

3.9r $\mu \mathrm{m}$ $10.8 \mu \mathrm{~m}$
3.9r $\mu \mathrm{m}$

$0.8 \mu \mathrm{~m}$

 $10.8 \mu \mathrm{~m}$

$0.8 \mu \mathrm{~m}$

3.9r $\mu \mathrm{m}$

$10.8 \mu \mathrm{~m}$

But, Cloud drops

 over pristine ocean can be large, thus ambiguous with ice

But,

 Cloud drops over pristine ocean can be large, thus ambiguous with iceCan you point at the water clouds?

Red: Visible reflectance

Green: $3.7 \mu \mathrm{~m}$ reflectance
Blue: $11 \mu \mathrm{~m}$ temperature

Red: Visible reflectance
Green: $3.7 \mu \mathrm{~m}$ reflectance
Blue: $11 \mu \mathrm{~m}$ temperature

How can we detect from space the phase and size of microscopic cloud particles?

MSG

Slide 29

Channel 4, $3.9 \mu \mathrm{~m}$, absorbs even more solar radiation than Channel 3, $1.6 \mu \mathrm{~m}$. Ice absorbs more strongly than water at $3.9 \mu \mathrm{~m}$.

How can we detect from space the phase and size of microscopic cloud particles?

MTG

Slide 30

Channel 4, $3.9 \mu \mathrm{~m}$, absorbs even more solar radiation than Channel 3, $1.6 \mu \mathrm{~m}$. Ice absorbs more strongly than water at $3.9 \mu \mathrm{~m}$.

Refractive Index of Ice and Water

The spectral dependence of the imaginary component of the refractive indices of ice and water between 2.0 and $2.3 \mu \mathrm{~m}$, showing the crossing point around $2.15 \mu \mathrm{~m}$.

How can we detect from space the phase and size of microscopic cloud particles?

Slide 32

Channel 4, $3.9 \mu \mathrm{~m}$, absorbs even more solar radiation than Channel 3, $1.6 \mu \mathrm{~m}$. Ice absorbs more strongly than water at $3.9 \mu \mathrm{~m}$.

CHANNEL MTG	CENTRE WAVELENGTH	SPECTRAL WIDTH	SPATIAL SAMPLING DISTANCE (SSD)
VIS 0.4	$0.444 \mu \mathrm{~m}$	$0.060 \mu \mathrm{~m}$	1.0 km
VIS 0.5	$0.510 \mu \mathrm{~m}$	$0.040 \mu \mathrm{~m}$	1.0 km
VIS 0.6	$0.640 \mu \mathrm{~m}$	$0.050 \mu \mathrm{~m}$	1.0 km; 0.5 km*
VIS 0.8	$0.865 \mu \mathrm{~m}$	$0.050 \mu \mathrm{~m}$	1.0 km
VIS 0.9	$0.914 \mu \mathrm{~m}$	$0.020 \mu \mathrm{~m}$	1.0 km
NIR 1.3	$1.380 \mu \mathrm{~m}$	$0.030 \mu \mathrm{~m}$	1.0 km
NIR 1.6	$1.610 \mu \mathrm{~m}$	$0.050 \mu \mathrm{~m}$	1.0 km
NIR 2.2	$2.250 \mu \mathrm{~m}$	$0.050 \mu \mathrm{~m}$	$1.0 \mathrm{~km} ; 0.5 \mathrm{~km}{ }^{\text {* }}$
IR 3.8 (TIR)	$3.800 \mu \mathrm{~m}$	$0.400 \mu \mathrm{~m}$	2.0 km; 1.0 km*
WV 6.3	$6.300 \mu \mathrm{~m}$	$1.000 \mu \mathrm{~m}$	2.0 km
WV 7.3	$7.350 \mu \mathrm{~m}$	$0.500 \mu \mathrm{~m}$	2.0 km
IR 8.7 (TIR)	$8.700 \mu \mathrm{~m}$	$0.400 \mu \mathrm{~m}$	2.0 km
IR $9.7\left(\mathrm{O}_{3}\right)$	$9.660 \mu \mathrm{~m}$	$0.300 \mu \mathrm{~m}$	2.0 km
IR 10.5 (TIR)	$10.500 \mu \mathrm{~m}$	$0.700 \mu \mathrm{~m}$	2.0 km; 1.0 km*
IR 12.3 (TIR)	$12.300 \mu \mathrm{~m}$	$0.500 \mu \mathrm{~m}$	2.0 km
IR $13.3\left(\mathrm{CO}_{2}\right)$	$13.300 \mu \mathrm{~m}$	$0.600 \mu \mathrm{~m}$	2.0 km

Note: The channels VIS 0.6, NIR 2.2, IR 3.8 and IR 10.5 are delivered in both FDS and RRS sampling configurations, the latter is indicated by *in the table.

CHANNEL MTC	CENTRE WAVELENGTH	SPECTRAL WIDTH	SPATIAL SAMPLING DISTANCE (SSD)
VIS 0.4	$0.444 \mu \mathrm{~m}$	$0.060 \mu \mathrm{~m}$	1.0 km
VIS 0.5	$0.510 \mu \mathrm{~m}$	$0.040 \mu \mathrm{~m}$	1.0 km
VIS 0.6	$0.640 \mu \mathrm{~m}$	$0.050 \mu \mathrm{~m}$	1.0 km; 0.5 km*
VIS 0.8	$0.865 \mu \mathrm{~m}$	$0.050 \mu \mathrm{~m}$	1.0 km
VIS 0.9	$0.914 \mu \mathrm{~m}$	$0.020 \mu \mathrm{~m}$	1.0 km
NIR 1.3	$1.380 \mu \mathrm{~m}$	$0.030 \mu \mathrm{~m}$	1.0 km
NIR 1.6	$1.610 \mu \mathrm{~m}$	$0.050 \mu \mathrm{~m}$	1.0 km
NIR 2.2	$2.250 \mu \mathrm{~m}$	$0.050 \mu \mathrm{~m}$	1.0 km; 0.5 km*
IR 3.8 (TIR)	$3.800 \mu \mathrm{~m}$	$0.400 \mu \mathrm{~m}$	2.0 km; 1.0 km*
WV 6.3	$6.300 \mu \mathrm{~m}$	$1.000 \mu \mathrm{~m}$	2.0 km
WV 7.3	$7.350 \mu \mathrm{~m}$	$0.500 \mu \mathrm{~m}$	2.0 km
IR 8.7 (TIR)	$8.700 \mu \mathrm{~m}$	$0.400 \mu \mathrm{~m}$	2.0 km
IR $9.7\left(\mathrm{O}_{3}\right)$	$9.660 \mu \mathrm{~m}$	$0.300 \mu \mathrm{~m}$	2.0 km
IR 10.5 (TIR)	$10.500 \mu \mathrm{~m}$	$0.700 \mu \mathrm{~m}$	2.0 km; 1.0 km*
IR 12.3 (TIR)	$12.300 \mu \mathrm{~m}$	$0.500 \mu \mathrm{~m}$	2.0 km
IR $13.3\left(\mathrm{CO}_{2}\right)$	$13.300 \mu \mathrm{~m}$	$0.600 \mu \mathrm{~m}$	2.0 km

Note: The channels VIS 0.6, NIR 2.2,IR 3.8 and IR 10.5 are delivered in both FDS and RRS sampling configurations, the latter is indicated by *in the table.

CHANNEL MTC	CENTRE WAVELENGTH	SPECTRAL WIDTH	SPATIAL SAMPLING DISTANCE (SSD)
VIS 0.4	$0.444 \mu \mathrm{~m}$	$0.060 \mu \mathrm{~m}$	1.0 km
VIS 0.5	$0.510 \mu \mathrm{~m}$	$0.040 \mu \mathrm{~m}$	1.0 km
VIS 0.6	$0.640 \mu \mathrm{~m}$	$0.050 \mu \mathrm{~m}$	$1.0 \mathrm{~km} ; 0.5 \mathrm{~km}$ *
VIS 0.8	$0.865 \mu \mathrm{~m}$	$0.050 \mu \mathrm{~m}$	1.0 km
VIS 0.9	$0.914 \mu \mathrm{~m}$	$0.020 \mu \mathrm{~m}$	1.0 km
NIR 1.3	$1.380 \mu \mathrm{~m}$	$0.030 \mu \mathrm{~m}$	1.0 km
NIR 1.6	$1.610 \mu \mathrm{~m}$	$0.050 \mu \mathrm{~m}$	1.0 km
NIR 2.2	$2.250 \mu \mathrm{~m}$	$0.050 \mu \mathrm{~m}$	$1.0 \mathrm{~km} ; 0.5 \mathrm{~km}{ }^{\text {* }}$
IR 3.8 (TIR)	$3.800 \mu \mathrm{~m}$	$0.400 \mu \mathrm{~m}$	2.0 km; 1.0 km *
WV 6.3	$6.300 \mu \mathrm{~m}$	$1.000 \mu \mathrm{~m}$	2.0 km
WV 7.3	$7.350 \mu \mathrm{~m}$	$0.500 \mu \mathrm{~m}$	2.0 km
IR 8.7 (TIR)	$8.700 \mu \mathrm{~m}$	$0.400 \mu \mathrm{~m}$	2.0 km
IR $9.7\left(\mathrm{O}_{3}\right)$	$9.660 \mu \mathrm{~m}$	$0.300 \mu \mathrm{~m}$	2.0 km
IR 10.5 (TIR)	$10.500 \mu \mathrm{~m}$	$0.700 \mu \mathrm{~m}$	2.0 km; 1.0 km *
IR 12.3 (TIR)	$12.300 \mu \mathrm{~m}$	$0.500 \mu \mathrm{~m}$	2.0 km
IR $13.3\left(\mathrm{CO}_{2}\right)$	$13.300 \mu \mathrm{~m}$	$0.600 \mu \mathrm{~m}$	2.0 km

Note: The channels VIS 0.6, NIR 2.2, IR 3.8 and IR 10.5 are delivered in both FDS and RRS sampling configurations, the latter is indicated by *in the table.

Wave length [$\mu \mathrm{m}$]	Himawari-8/9				MTSAT-1R/2	
	Band number	Spatial resolution at SSP [km]	Central wave length [$\mu \mathrm{m}$]		Channel name	Spatial resolution at SSP [km]
			AHI-8 (Himawari-8)	AHI-9 (Himawari-9)		
0.47	1	1	0.47063	0.47059	-	-
0.51	2	1	0.51000	0.50993	-	-
0.64	3	0.5	0.63914	0.63972	VIS	1
0.86	4	1	0.85670	0.85668	-	-
1.6	5	2	1.6101	1.6065	-	-
2.3	6	2	2.2568	2.2570	-	-
3.9	7	2	3.8853	3.8289	IR4	4
6.2	8	2	6.2429	6.2479	IR3	4
6.9	9	2	6.9410	6.9555	-	-
7.3	10	2	7.3467	7.3437	-	-
8.6	11	2	8.5926	8.5936	-	-
9.6	12	2	9.6372	9.6274	-	-
10.4	13	2	10.4073	10.4074	IR1	4
11.2	14	2	11.2395	11.2080	-	-
12.4	15	2	12.3806	12.3648	IR2	4
13.3	16	2	13.2807	13.3107	-	-

Red: Visible reflectance

Green: $3.7 \mu \mathrm{~m}$ reflectance

Blue: $11 \mu \mathrm{~m}$ temperature

Red: T6.2-7.3 $\mu \mathrm{m}$
Green: T6.2-7.3 $\mu \mathrm{m}$
Blue: 1.6-0.64 $\mu \mathrm{m}$

H8 2016/07/09 03:43 N19.49 E143.29
$\mathrm{r}=$ refl $1.6 \mathrm{~g}=$ refl $_2.3$
Zhiguo Yue \& Guihua Liu \& Xing Yu \& D. Rosenfeld

Red: $1.6 \mu \mathrm{~m}$ reflectance
Green: $2.3 \mu \mathrm{~m}$ reflectance
Blue: Visible reflectance

H8 2015/12/22 03:40 r = refl $0.65 \mathrm{um} \mathrm{g}=$ refl_0.51um $=$ refl 0.46 um

H8 2015/12/22 03:40 r = refl_0.65um $\mathrm{g}=$ refl_0.51umb=refl 0.46 um
Zhiguo Yue \& Guihua Liu \& Xing Yu \& D. Rosenfeld

Green: $3.7 \mu \mathrm{~m}$ reflectance
Blue: $11 \mu \mathrm{~m}$ temperature

Red: Visible reflectance
Green: $2.3 \mu \mathrm{~m}$ reflectance
Blue: $11 \mu \mathrm{~m}$ temperature

Red: NIR1.6, Range 0 to 40 \% Green: NIR2.3, Range 0 to 40% Blue: VIS0.4, Range 0 to 100%

H8 2015/12/22 03:42 N23.69 E100.70

H8 2015/12/22 03:40 N23.69 E100.70

value $=\mathrm{Re}$
Zhiguo Yue \& Guihua Liu \& Xing Yu \& D. Rosenfeld

$\begin{array}{lllllllll}0 & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40\end{array}$

Red: T12.3-T11.2
Green: T11.2-T8.6
Blue: T11.2

H8 2015/12/22 03:42 N23.69 E100.70

H8 2015/12/22 03:40 r $=$ refl $0.65 \mathrm{um} \mathrm{g}=$ refl 0.51 um
Zhiguo Yue \& Guihua Liu \& Xing Yu \& D. Rosenfeld

 the mountains?

Are there cloudsover the mountains?

Are there cíouds over the mountains?

$$
-2
$$
 Pointer at the frozen
 lakes

H8 2015/12/22 03:40 r = refl $0.65 \mathrm{um} \mathrm{g}=$ refl_0.51um $=$ refl 0.46 um

Pointer at the Antarctic sea ice

CHANNEL	CENTRE WAVELENGTH	SPECTRAL WIDTH	SPATIAL SAMPLING DISTANCE (SSD)
VIS 0.4	$0.444 \mu \mathrm{~m}$	$0.060 \mu \mathrm{~m}$	1.0 km
VIS 0.5	$0.510 \mu \mathrm{~m}$	$0.040 \mu \mathrm{~m}$	1.0 km
VIS 0.6	$0.640 \mu \mathrm{~m}$	$0.050 \mu \mathrm{~m}$	$1.0 \mathrm{~km} ; 0.5 \mathrm{~km}$ *
VIS 0.8	$0.865 \mu \mathrm{~m}$	$0.050 \mu \mathrm{~m}$	1.0 km
VIS 0.9	$0.914 \mu \mathrm{~m}$	$0.020 \mu \mathrm{~m}$	1.0 km
NIR 1.3	$1.380 \mu \mathrm{~m}$	$0.030 \mu \mathrm{~m}$	1.0 km
NIR 1.6	$1.610 \mu \mathrm{~m}$	$0.050 \mu \mathrm{~m}$	1.0 km
NIR 2.2	$2.250 \mu \mathrm{~m}$	$0.050 \mu \mathrm{~m}$	$1.0 \mathrm{~km} ; 0.5 \mathrm{~km}{ }^{\text {* }}$
IR 3.8 (TIR)	$3.800 \mu \mathrm{~m}$	$0.400 \mu \mathrm{~m}$	2.0 km; 1.0 km *
WV 6.3	$6.300 \mu \mathrm{~m}$	$1.000 \mu \mathrm{~m}$	2.0 km
WV 7.3	$7.350 \mu \mathrm{~m}$	$0.500 \mu \mathrm{~m}$	2.0 km
IR 8.7 (TIR)	$8.700 \mu \mathrm{~m}$	$0.400 \mu \mathrm{~m}$	2.0 km
IR $9.7\left(\mathrm{O}_{3}\right)$	$9.660 \mu \mathrm{~m}$	$0.300 \mu \mathrm{~m}$	2.0 km
IR 10.5 (TIR)	$10.500 \mu \mathrm{~m}$	$0.700 \mu \mathrm{~m}$	2.0 km; 1.0 km *
IR 12.3 (TIR)	$12.300 \mu \mathrm{~m}$	$0.500 \mu \mathrm{~m}$	2.0 km
IR $13.3\left(\mathrm{CO}_{2}\right)$	$13.300 \mu \mathrm{~m}$	$0.600 \mu \mathrm{~m}$	2.0 km

Note: The channels VIS 0.6, NIR 2.2, IR 3.8 and IR 10.5 are delivered in both FDS and RRS sampling configurations, the latter is indicated by *in the table.

High spatial resolution is required to resolve the vertical structure of convective clouds. Lower resolution
misses all but largest and deepest convective clouds. Lower resolution clouds.

Measurement concept for T-r r_{e} based CCN retrievals

H8 2016/07/09 03:43 N19.49 E143.29
$\mathrm{r}=$ refl $_1.6 \mathrm{~g}=$ refl $_2.3$
Zhiguo Yue \& Guihua Liu \& Xing Yu \& D. Rosenfeld

MODIS microphysical resolution: 1000 m
NPP/VIIRS products resolution: 750 m NPP/VIIRS Imager resolution: 375 m

VIIRS 20120427 04:59

Red: Visible reflectance

Green: $3.7 \mu \mathrm{~m}$

Blue: $11 \mu \mathrm{~m}$ temperature

201208010520-modis

Summary

Until now ice cloud was differentiated from supercooled water cloud mainly based on assumption that ice crystals are typically much larger that cloud drops.

However, supercooled clouds can have very large drops Using a combination that cause ambiguity with ice.

Because ice absorbs more strongly at $1.6 \mu \mathrm{~m}$ while water absorbs more strongly at $2.3 \mu \mathrm{~m}$, the combination these channels allows an unambiguous separation between water and ice clouds.

