

Tuning of RGB products and new RGB products from MTG FCI

Jochen Kerkmann jochen.kerkmann@eumetsat.int

Outline

- 1) Motivation: why RGBs ?
- 2) RGBs for operational forecasting
- 3) Other standard RGBs
- 4) Tuning of RGBs to FCI channels
- 5) New RGBs with new channels

R

1.0

Motivation: Why RGBs

MSG Improvements: Aerosols (Dust, Ash, Smoke)

MFG IR Channel

MSG Dust RGB

MTG Improvements: horizontal sampling (up to 0.5 km)

(courtesy D. Rosenfeld)

2005 06 25 11:57

MS

Combined use of RGBs and derived products

SEVIRI Ash Load

Dust RGB

Eruption Eyjafjallajokull, 15 April 2010

Recommended SEVIRI RGBs (for operational forecasting)

Most important RGBs (for Operational Forecasting)

24-h Microphysics (Dust) RGB

Airmass RGB

Airmass RGB: Deformation Zone

COL

MSG Improvements: Moisture Boundaries

Convergence Line

moist

Thin dust

Orographic Convergence Line

Meteosat-08

Seabreeze front

5 September 2016, 12:00 UTC

Limb cooling in Airmass RGB

Him-08

5 September 2016, 12:00 UTC

Impact of viewing angle on dust detection

Met-08

Him-08

5 September 2016, 12:00 UTC

Dust (and smoke) often better detected at high viewing angles (NADIR view is not always the best one)

Tropical version of Airmass RGB (Overshooting Tops RGB)

	Standard	Tropical
R WV6.2 – WV7.3	-25 to 0 K	-25 to +5 K (6.2-10.8)
G IR9.7 – IR10.8	-40 to +5 K	-30 to +25 K (Gamma 0.5)
B WV6.2	243 to 208 K	243 to 190 K

Tropical version of Airmass RGB (Overshooting Tops RGB)

Standard

3 October 2015, 00:00 UTC, West Africa

Day Microphysics RGB

010/01/26 10:27 I.M.Lensky (BIU)& .Rosenfeld (HUJI)

B = IR10.8

R = VIS0.8 G = IR3.9r

CH04 A3.9

Yellow represents smaller drops. Pink represents larger drops.

CH02

Advection from land

RGB Day Microphysics will become more important for fog / low clouds and convection !

From: Lensky & Rosenfeld

R = IR12.0 - IR10.8 G = IR10.8 - IR3.9 B = IR10.8

Night Microphysics RGB

Met-10, SEVIRI, Night Micro RGB (enh) 1 October 2014, 00:45 UTC – 3 km

Night Microphysics RGB

Aqua, MODIS, Night Micro RGB (enh) 1 October 2014, 00:55 UTC – 1 km

Tropical version of Night Microphysics RGB

	Standard	Tropical	
R IR12.0 – IR10.8	-4 to +2 K	-4 to +2 K	
G IR10.8 – IR3.9	0 to +10 K	0 to +5 K	
B IR10.8	243 to 293 K	273 to 300 K	

Tropical version of Night Microphysics RGB

Standard

Tropical

3 October 2015, 00:00 UTC, East Africa

Day Convective Storms RGB

R = WV6.2 - WV7.3

G = IR10.8 - IR3.9

 $\mathbf{B} = \mathbf{NIR1.6} - \mathbf{VIS0.6}$

MSG-1, 6 November 2004, 12:00 UTC

- Small ice (high IR3.9r of 6-7%)
- Long-living storm system
- Convective outflow boundary
- Overshooting tops
- Gravity waves
- Radial Ci

Tropical version of Convection RGB

	<u>Standard</u>	Tropical
R WV6.2 – WV7.3	-35 to +5 K	-35 to +5 K
G IR3.9 – IR10.8	-5 to +60 K Gamma 0.5	-5 to +75 K Gamma 0.33
B NIR1.6 - VIS0.6	-75 to +25 %	-75 to +25 %

Standard Convection RGB

South Africa

Tropical Convection RGB Green range: -5 to +75 K Green Gamma: 3.0

South Africa

Change the Green range and the Green Gamma to get the best enhancement of the most active parts of the convective storms

R = NIR1.6 G = VIS0.8 B = VIS0.6

Natural Colours RGB (Metop AVHRR example) Lake Tuz (Tuz Gölü)

Turkey in Winter

Turkey in Summer

R = VIS0.8 G = NIR1.6 B = IR3.9r

Day Snow-Fog RGB

RGB "Day Snow Fog" for low clouds / snow discimination 24 Feb 2003, 11:00 UTC

RGBs with HRV will disappear Replaced -> RGB Day Snow Fog

RV Fog RGB

convergence line

R = NIR1.6

G = HRV B = HRV

(source: M. Putsay)

low-level Lee wave cloud

Tuning of RGBs to new channel characteristics

For which RGBs is tuning needed ?

FCI Channels

Spectral Channel	Central Wavelength, λ₀ (μm)	Spectral Width, Δλ₀ (μm)	On-ground spatial sampling distance (km)
VIS 0.4	0.444	0.060	1.0
VIS 0.5	0.510	0.040	1.0
VIS 0.6	0.640	0.050	1.0 / 0.5
VIS 0.8	0.865	0.050	1.0
VIS 0.9	0.914	0.020	1.0
NIR 1.3	1.380	0.030	1.0
NIR 1.6	1.610	0.050	1.0
NIR 2.2	2.250	0.050	1.0 / 0.5
IR1 3.8	3.800	0.400	2.0 / 1.0
IR1 6.3	6.300	1.000	2.0
IR1 7.3	7.350	0.500	2.0
IR2 8.7	8.700	0.400	2.0
IR2 9.7	9.660	0.300	2.0
IR3 10.5	10.500	0.700	2.0 / 1.0
IR3 12.3	12.300	0.500	2.0
IR3 13.3	13.300	0.600	2.0

For which RGBs is tuning needed ?

Spectral Response Function changed !!

	Spectral Channel	Central Wavelength, λ₀ (μm)	Spectral Width, Δλ₀ (μm)	On-ground spatial sampling distance (km)
	VIS 0.4	0.444	0.060	1.0
	VIS 0.5	0.510	0.040	1.0
	VIS 0.6	0.640	0.050	1.0 / 0.5
	VIS 0.8	0.865	0.050	1.0
	VIS 0.9	0.914	0.020	1.0
	NIR 1.3	1.380	0.030	1.0
	NIR 1.6	1.610	0.050	1.0
	NIR 2.2	2.250	0.050	1.0 / 0.5
	IR1 3.8	3.800	0.400	2.0 / 1.0
	IR1 6.3	6.300	1.000	2.0
	IR1 7.3	7.350	0.500	2.0
	IR2 8.7	8.700	0.400	2.0
	IR2 9.7	9.660	0.300	2.0
♦	IR3 10.5	10.500	0.700	2.0 / 1.0
♦	IR3 12.3	12.300	0.500	2.0
	IR3 13.3	13.300	0.600	2.0

Mostly concerned: RGB Night Micro, RGB Dust (24-h Micro)

No tuning needed for Airmass RGB

Green range: 0 to 10 K (IR3.9 - IR11.2)

RGB Night Microphysics Ex-Typhoon Atsani, 25 August 2015, 12:00 UTC Him-08, AHI, RGB Night Microphysics, SEVIRI standard Green range: -5 to 5 K (IR3.9 - IR11.2)

RGB Night Microphysics Ex-Typhoon Atsani, 25 August 2015, 12:00 UTC Him-08, AHI, RGB Night Microphysics, Tuned

RGB recipes adjusted for Himawari-8 using the JMA correlation / regression analysis

Dust RGB	Range	Gamma
12.0 – 10.4 micron	-6.7 to 2.6	1.0
10.4 – 8.7 micron	1 to 10.9	2.5
10.4 micron	261.2 to 288.7	1.0

from: "Introduction of JMA VLab Support Site on RGB Composite Imagery and tentative RGBs". AOMSUC-6 presentation by Akihiro Shimizu (JMA)

Night Microphysics RGB	Range	Gamma
12.0 – 10.4 micron	-6.7 to 2.6	1.0
10.4 – 3.9 micron	-3.1 to 5.2	1.0
10.4 micron	243.6 to 292.6	1.0

RGBs using new FCI channels

FCI on Meteosat Third Generation (MTG)

FCI – Benefits from new Channels

- The 0.96 µm channel is used for total column precipitable water (daytime)
- The 2.25 µm channel is used for cloud microphysics (daytime)
- The 0.444 µm and the 0.51 µm channels are used for true colour images and aerosol retrievals (daytime)
- The 1.375 µm channel is used for detection of very thin cirrus clouds (daytime)

FCI Optical Design

Spectral Channel	Central Wavelength,	Spectral Width, $\Delta \lambda_0$	On-ground spatial	
	λ ₀ (μm)	(μm)	sampling distance (km)	
VIS 0.4	0.444	0.060	1.0	AHI, ABI, VIIRS, MODIS
VIS 0.5	0.510	0.040	1.0	AHI
VIS 0.6	0.640	0.050	1.0 / 0.5	
VIS 0.8	0.865	0.050	1.0	
VIS 0.9	0.914	0.020	1.0	MODIS
NIR 1.3	1.380	0.030	1.0	MODIS, VIIRS, ABI
NIR 1.6	1.610	0.050	1.0	
NIR 2.2	2.250	0.050	1.0 / 0.5	AHI, ABI, VIIRS (not MODIS)
IR1 3.8	3.800	0.400	2.0 / 1.0	
IR1 6.3	6.300	1.000	2.0	
IR1 7.3	7.350	0.500	2.0	
IR2 8.7	8.700	0.400	2.0	
IR2 9.7	9.660	0.300	2.0	
IR3 10.5	10.500	0.700	2.0 / 1.0	1
IR3 12.3	12.300	0.500	2.0	
IR3 13.3	13.300	0.600	2.0	

True Colour RGB from FCI

	<u>Range</u>
R VIS0.6	0 to 100 %
G VIS0.5	0 to 100 %
B VISO.4	0 to 100 %

Attention: if the VIS0.6 channel has higher resolution, up- or down-scaling is needed!

FCI – "True" Colour Images

FCI and AHI Have 0.51 µm band (instead of 0.55)

This band is not on ABI on GOES-R

Comparisons of AHI true color imagery to VIIRS & MODIS showed vegetation too brown ...

7 July 2015 Him-08, AHI, "True" Colour RGB, Source: JMA With Rayleigh Atmosphere Corrections and Hybrid Green Band

Australia

Source: Steve Miller

Smoke on the water, Sea of Japan

True Colour RGB with all corrections, source: CIRA

Smoke on the water, Sea of Japan No Rayleigh corrections

21 September 2016, 6:00 UTC

RGB Composite NIR1.6-VIS0.8-VIS0.4

Cloud Phase RGB from FCI

	Range
R NIR1.6	0 to 50 %
G NIR2.3	0 to 50 %
B VIS0.5/VIS0.6	0 to 100 %

Attention: if the VIS0.6 channel has higher resolution, up- or down-scaling is needed!

NIR2.25: Cloud Microphysical Channel

 MODIS 2.1 band has a central wavelength at 2.13 micron to be compared to the 2.25 micron for VIIRS, FCI, AHI/ABI

ETSAT

Ice absorption changes a lot between 2.13 and 2.25

AHI Solar Bands - zoom

Band 4 (VIS0.8)

Band 5 (NIR1.6)

Band 6 (NIR2.3)

1 km

2 km

20 August 2015, 00:00 UTC Typhoon Atsani, Pacific Ocean

Not sure if water or ice clouds

25 November 2015, 02:02 UTC Typhoon IN-FA, Pacific Ocean

RGB Composite NIR1.6, VISO.8, VISO.4

Definitly

water clouds

RGB Composite NIR1.6, NIR2.3, VIS0.4

Fire Power (Temperature) RGB from FCI

Attention: solar channels have higher resolution, up- or down-scaling is needed!

Planck's Radiation Law

Planck's Radiation Law

$$L(\lambda, T) = \frac{C_1}{\lambda^5 (\exp(\frac{C_2}{\lambda T}) - 1)}$$

Fire temperatures range from a minimum of ~ 500 K (weak smoulding) to max ~ 1400 K (intense flaming). Emission peaks in the MIR region.

7 Fires in Laos, AHI, Band 7 - IR3.9

3.9 um IR Low Quad/Fog Fire detection 2016-04-03 06:00

Fires in Laos, AHI, RGB Fire Power

RGB Composite IR3.9 - NIR2.3 - NIR1.6

New Day Microphysics RGB from FCI?

Advantage: No need to calculate solar component of IR3.9

Disadvantage: not so good for cloud phase

Attention: solar channels have higher resolution than IR channels, up- or down-scaling is needed!

Northern NSW storm, 13th October 0320UTC

Day Convection RGB product

image courtesy JMA / Jochen Kerkmann EUMETSAT

AHI, Band 07 (IR3.9, total component) – 2 km

2015-10-13 04:00UTC

AHI, Band 06 (NIR2.3) – 2 km

2015-10-13 04:00UTC

AHI, RGB VIS0.5, NIR2.25, IR11.2 – 2 km

2015-10-13 04:00UTC

New Natural Colour RGB from FCI?

	Range
R NIR2.3	0 to 50 %
G VISO.8	0 to 100 %
B VISO.6	0 to 100 %

Disadvantage: NIR2.3 not so good for cloud phase

Attention: if the VIS0.6 channel has higher resolution, up- or down-scaling is needed!

1.6 micron version (in Red component)

the Martin

White

2.3 micron version (in Red component)

n AHLNach I colol (24-bit), Feorganium (RGB); red/green/bite Tue (1800////Oct-16 + [SPARJ] H

to Belly

Websterliste

Day Cirrus RGB from FCI (RGB with NIR1.3)?

Using: NIR1.3, IR12.3-IR10.5, IR IR10.5-IR3.9

Cirrus colour should be dark (black) ?

Moisture RGB from FCI (RGB with VIS0.9-VIS0.8)?

- Using the weak solar absorption in 0.9 μm (difference 0.96 0.86 $\mu m)$
- Using the weak thermal absorption at 12 μm (difference 10.5 12.3 $\mu m)$

Using the weak thermal absorption in 12.0 μm

MODIS Day & Night 12-10.8 10.8-8.7 10.8 μm 2006 07 14 10:20

Courtesy D. Rosenfeld, Univ. Jerusalem

Moist

MODIS Solar Vapor (0.94-0.90)/(0.94+0.90) μm 2006 07 14 10:20

D

Courtesy D. Rosenfeld, Univ. lerusalem

Using the weak solar absorption in 0.9 mm

Conclusions

Phil Chadwick (Canada):

- All NWP is wrong but some NWP is useful...
- It may look great but it's not real... don't be seduced!

NWP (TPW) Not Real

Derived Product (TPW) "Semi" Real

RGB Image Real

1st WMO RGB Workshop, Boulder, June 2007

First row, right to left:

Second row, right to left:

Third row, right to left:

Mr Jeff Wilson, Mr Hans-Peter Roesli (Chairman), Mr Richard Francis

Mr Patrick Dills, Dr Andy Kwarteng, Dr Volker Gärtner, Mr Brian Motta

Dr Don Hillger, Dr Adamou Garba, Mr Tom Yoksas, Mr Daniel Barrera

2nd WMO RGB Workshop, Seeheim, September 2012

From left to right:

Front Row: Bodo Zeschke, Thiago Souza Biscaro, Carla Barroso, Hama Hamidou, Estelle de Coning, Brian Motta, Ignatius Gitonga, Ayako Takeuchi

Second Row: Sungwook Hong, Tahar Saouri, Michael Fromm, Renate Brummer, Jochen Kerkmann, Roland Winkler, Stephan Bojinski

Third Row: Ning Niu, Jian Liu, Virendra Singh, HansPeter Roesli, Andreas Wirth

Fourth Row: Kevin Fuell, Andrew Molthan, Sauli Joro, Tom Rink

Not in picture: Phil Watts, Volker Gärtner, Marianne König, Vesa Nietosvaara, Mark Higgins

3rd WMO RGB Workshop, End 2017?

Larger Group ...

(picture from Convection WG, April 2016)

