

**Evapotranspiration monitoring** 

with Meteosat Second Generation satellites: method, products and utility in drought detection.





EUMeTrain Event week on drought, floods & landslides, 1-5 December 2014

# Evapotranspiration





Corn field (100x100 m<sup>2</sup>): ??

150 liters in 1 day

1 500 liters in 1 day

15 000 liters in 1 day

Plants do transpire a lot.



large oak tree:

151 000 liters in 1 year



Evapotranspiration monitoring can be essential for drought detection.

Evapotranspiration can be measured! Indirectly, though ...



### Models compute evapotranspiration



Satellite observation complement models!









### **Royal Meteorological Institute of Belgium**

"... services supported by research and long term standardised meteorological, climatological and geophysical observations ..." (http://www.meteo.be)

"Reliable public service realised by empowered staff and based on research, innovation and continuity."



# HydroMeteorology group on modelling& remote sensing



F. Meulenberghs A. Arboleda J.M. Barrios

# Where are you?



# Who are you?

I'm a researcher

I work for governmental decision planning

Other:

# Who are you?

I plan to use EUMETSAT products

I am here for general interest

I'm already a EUMETSAT user

I'm already using remote sensing products from other agencies

I'm prospecting for satellite products

Other:

### Outline

- 1. What is evapotranspiration (ET)?
- 2. The role of satellites for ET monitoring
- 3. LSA-SAF ET: algorithm & product
- 4. Utility of ET in drought monitoring

# <u>Outline</u>

- 1. What is evapotranspiration (ET)?
- 2. The role of satellites for ET monitoring
- 3. LSA-SAF ET: algorithm & product
- 4. Utility of ET in drought monitoring

### The transpiration process

Plant « Breathing » and the Transpiration Process

### 1. Root-zone water



For transpiration to occur, there must be water available!

### 2. Root water uptake



- -Water taken to leaves through roots
- -Light is necessary

### 3. Exchange plant-atmosphere



Water vapour is released into the air through leaves stomata

# The water cycle



On land, ET returns 58% of precipitation!

# Evapotranspiration: List of ingredients

Energy Interface

Water

Ambiant atmosphere

Surface net radiation

Soil occupation

Plant type & characteristics

Soil moisture









Wind Air movement



Air humidity





### Outline

- 1. What is evapotranspiration (ET)?
- 2. The role of satellites for ET monitoring
- 3. LSA-SAF ET: algorithm & product
- 4. Utility of ET in drought monitoring

# **Remote Sensing Opportunities**

### Orbits preferred for earth monitoring

### 1. (Near-) Polar orbiter, sun-synchronous

- -low orbit (~1000 km)
- -earth revolution in ~100 min

Need of several ground receivers for the data flow



Polar orbiters: Terra, Aqua, METOP, ...

### 2. Geostationary (geo-synchronous)

- -altitude (~36000 km)
- -over equator

Depending on longitude, need to correct longitudinal drift

Geostationary satellites: Meteosat, GOES, ...







# What useful variables derived from remote sensing?

### 1. Describe surface properties

High Intensity Urban Low Intensity Urban Grassland Red Pine Mixed/Other Coniferous Aspen Maple Land cover Mixed/Other Broad-leaved Deciduous Mixed Deciduous/Coniferous Open Water Emergent/Wet Meadow Lowland Shrub Lowland Shrub (Broad-leaved Evergreen) Forested Wetland
(Broad-leaved Deciduous) Forested Wetland (Coniferous) Forested Wetland (Mixed Deciduous/Coniferous) Shrubland

### 3. Atmosphere

### Cloudiness



### 2. Surface variables

Surface temperature



Greeness of vegetation



Snow cover



# **EUMETSAT SAF on Land Surface Analysis**



### Outline

- 1. What is evapotranspiration (ET)?
- 2. The role of satellites for ET monitoring
- 3. LSA-SAF ET: algorithm & product
- 4. Utility of ET in drought monitoring

### The LSA-SAF evapotranspiration model



**ECMWF** weather forecasts





(Ghilain N., Arboleda A., Gellens-Meulenberghs F., 2011, Hydrol. Earth Syst. Sci.)

# The LSA-SAF evapotranspiration model

### **Examples validation LSA-SAF MET product**















### The LSA-SAF evapotranspiration model

### **Product Required Accuracy** (LSA-SAF MET)



Relative difference of 5 days cumulated ET at Cabauw

# The LSA-SAF evapotranspiration products

Two images are generated: the first one contains instantaneous ET estimates in mm/h while the second one is the quality flag image, provides information on the quality of estimates pixel by pixel





# Instantaneous ET LSA-SAF MET

Surface type

Quality input data

Overall quality

| Bit   | Field         | Category | Binary<br>code | Description                   |
|-------|---------------|----------|----------------|-------------------------------|
|       |               | Sea      | 0              |                               |
| 00-00 | Land/Sea      | Land     | 1              |                               |
| 01-01 | Land cover    |          | 0              | IGBP                          |
|       |               |          | 1              | ECOCLIMAP                     |
|       |               |          | 1              | LCOCLINA                      |
| 02-02 | Cloud cover   |          | 0              | Covered                       |
|       |               |          | 1              | Clear / partially covered     |
|       |               |          | •              |                               |
| 03-04 | Snow cover    |          | 00             | Not processed                 |
|       |               |          | 01             | Snow covered                  |
|       |               |          | 10             | Partially covered             |
|       |               |          | 11             | Snow-free                     |
|       |               |          |                |                               |
| 05-06 | SM            |          | 00             | Corrupted / not processed     |
|       |               |          | 01             | SM from LSAF-SAF              |
|       |               |          | 10             | SM from other source (ECMWF)  |
| 07-07 |               |          |                |                               |
|       | AL            |          | 0              | Albedo from data base         |
|       |               |          | 1              | Albedo from AL product        |
| 08-09 | ICT           |          | 00             | Not used by now               |
|       | r91           |          | 00             | Not used by now               |
|       |               |          | 00             |                               |
|       |               |          | 00             |                               |
| 10-11 | DLSF          |          | 00             | Corrupted / not processed     |
|       | DESI          |          | 01             | Below nominal                 |
|       |               |          | 10             | Nominal                       |
|       |               |          | 11             | Above nominal                 |
|       |               |          | 11             | Above nominar                 |
| 12-13 | DSSF          |          | 00             | Corrupted / not processed     |
|       |               |          | 01             | Below specified angle of view |
|       |               |          | 10             | Cloudy sky method             |
|       |               |          | 11             | Clear sky method              |
|       | 1             | 1        |                |                               |
| 14-15 | ET confidence |          | 00             | Corrupted / not processed     |
|       |               |          | 01             | Poor quality                  |
|       |               |          | 10             | Below nominal                 |
|       |               |          | 11             | Nominal                       |

# The LSA-SAF evapotranspiration products



# The LSA-SAF evapotranspiration products

DMET images from 06/09 to 15/09 2009



### Near-real time production: how it works





- 1.Acquisition of MSG/SEVIRI corrected radiances and Clouds mapping (from EUMETSAT, Darmstadt, Germany)
- 2.Computation of radiation components (Land SAF computing facility)
- 3. Acquisition of the global weather forecasts (ECMWF), reproject and interpolate
- 4. Computation of ET over 4 areas (Europe, North/South Africa and South America)
- 5. Compute a quality index
- 6. Creation HDF5 files
- 7. Distribution through web or satellite to users
- 8. Distribution of regular update of User Manual and Validation Reports



### LAND SURFACE ANALYSIS SATELLITE APPLICATIONS FACILITY



#### Guest

#### About

Home Overview

Links

Contacts

Site Map

Site Search

#### News

Messages Workshops

Forum

#### Products

Description

Development Status

#### Documents

List

Publications

#### User Support

FAQs

#### Authentication

Login

Register

#### Home

The scope of Land Surface Analysis Satellite Applications Facility (LSA SAF) is to increase benefit from EUMETSAT Satellite (MSG and EPS) data related to:

- Land-Atmosphere interaction
- Biospheric Applications

#### The LSA SAF performs:

- R&D Programs.
- Operational Activities
  - Generation
  - Archiving
  - Dissemination



See colour legends...

#### of land surface related products.

#### Latest News:

- Important Change in LSA SAF lead NMS name see more...
- Important LSA SAF Products web dissemination service resumed. <u>see more...</u>
- Warning LSA SAF Products WEB Dissemination service stopped <u>see</u>
- Information LSA SAF Products web dissemination service resumed. see more...
- $\mathbf{Update}$  LSA SAF Products web dissemination service stopped.  $\underline{see}$   $\underline{more...}$
- Information Fire Risk Map see more...

#### **Product Development Status:**

#### MSG/SEVIRI based products

Wild Fires

Fire Detection and Monitoring

**Vegetation Parameters** 

#### **Snow Cover**

#### Other

#### Albedo

Surface Albedo MSG Ten Day Surface Albedo

Land Surface Temperature

#### Down-welling Surface Fluxes

#### Evapotranspiration

MetOp/AVHRR based products

**Land Surface Temperature** EPS - Land Surface Temperature

**Down-welling Surface Fluxes** 

Down-welling Surface Long-wave Radiation Flux

Internal Develop. Demo. Pre-Operat. Operat.

LSA SAF is an initiative of:





LSA SAF consortium in CDOP (2007-2012):



















LSA SAF System and Web site developed by:



**EUMETSAT** Disclaimer

LandSAF (UTC) Time: 10:32:49 Optimized for Mozilla Firefox 3, 1024x768

# <u>Outline</u>

- 1. What is evapotranspiration (ET)?
- 2. The role of satellites for ET monitoring
- 3. LSA-SAF ET: algorithm & product
- 4. Utility of ET in drought monitoring

# Clarification of concepts

### **Natural Evapotranspiration (ET)**

- = Actual evapotranspiration (AET)
- = Real evapotranspiration (ETR)

Evaporation of natural surfaces + plant transpiration

### **Potential Evapotranspiration (PET)**

Maximum evapotranspiration for a given climate and continuous vegetated surface (no hydric stress)

### Reference Evapotranspiration (ET0)

Used for agricultural irrigation management (FAO standard). Evapotranspiration (can be potential) of a well-watered grass patch.

### **Crop Evapotranspiration (ETc)**

Optimum evapotranspiration of a given crop (productivity not affected by hydric stress).

# Clarification of concepts

Natural Evapotranspirat

= Actual evar

= Real evar

iration (AET)

Potential E. .nspiration (PET)

Maximum evapotranspiration for a given climate and continuous vegetated surface (no hydric stress)

**Reference Evapotranspiration** 

Used for agricultural irrigating gement (FAO standard). Evapotranspiration (can invariant land) of a well-watered grass patch.

Crop Evapotran (ETc)

Optimum evapotra. piration of a given crop (productivity not affected by hydric stress).

# Clarification of concepts

# For crops



For a given crop: **ETc** = **Kc** × **ET0** 

# **Application perspectives**

Meteorological drought Europe, Spring 2011

Drought index (%) = 
$$\frac{AET}{PET}$$



# **Application perspectives**

Agricultural drought Europe, Spring 2011



**PET - AET = Water deficit** 



2011

# **Summary**



- Evapotranspiration estimation over wide and remote areas in near-real time, thanks to remote sensing.
- LSA-SAF evapotranspiration products monitor quantitatively the water loss from the surface into the atmosphere.
- Available products have been checked and show good comparison with in-situ observations (at least) over Europe.
- LSA-SAF ET products could be a useful tool for drought monitoring.

Contact: nicolas.ghilain@meteo.be