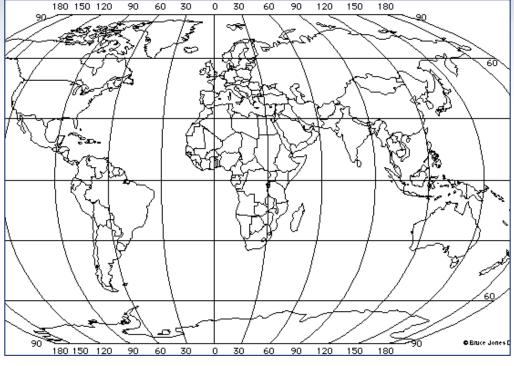


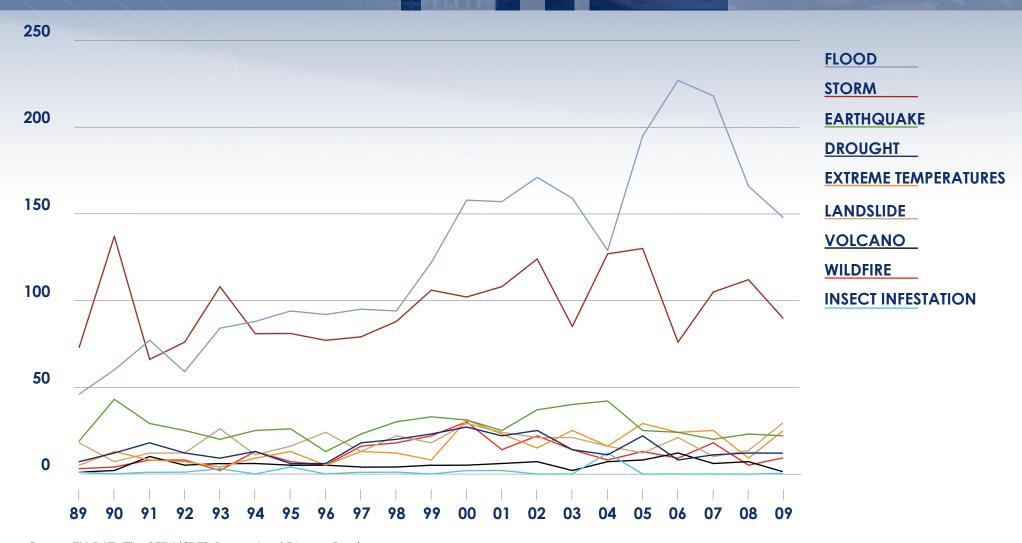
EUMETSAT

Monitoring weather and climate from space

Dr. Jochen Kerkmann jochen.kerkmann@eumetsat.int

Outline

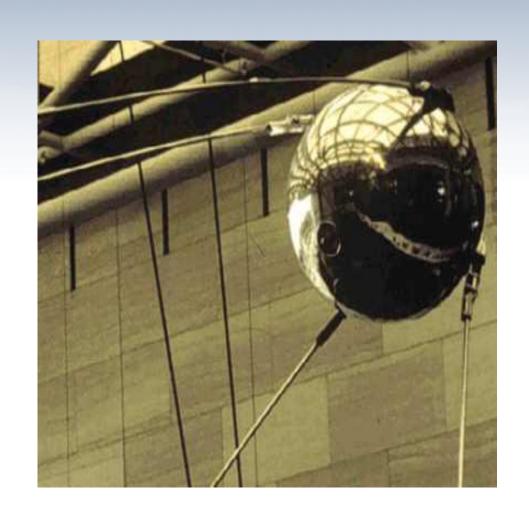

- 1) History of meteorological satellites
- 2) Satellite orbits & elements
- 3) EUMETSAT's current satellites


Where are you?

Motivation: number of weather disasters increases

Source: EM-DAT: The OFDA/CRED International Disaster Database

History of meteorological satellites


1946: Rockets and Cameras

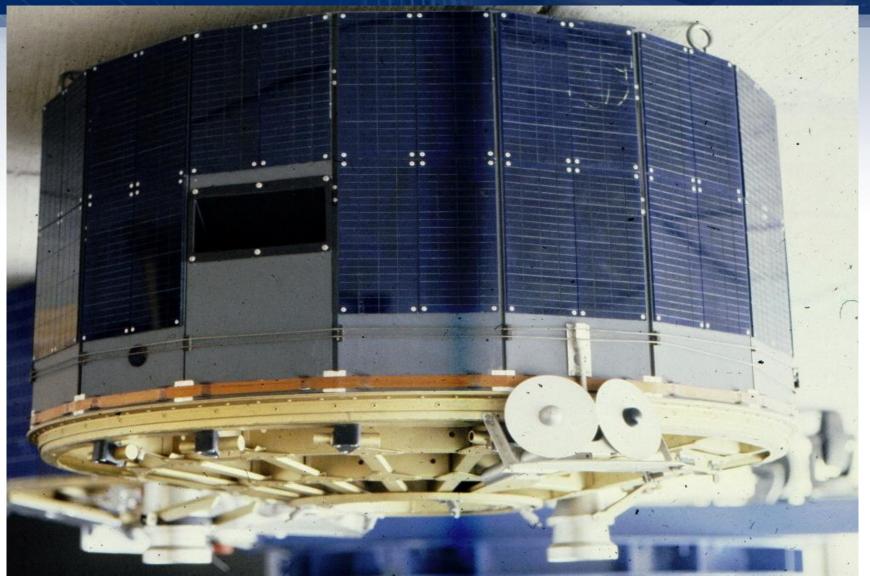

1957: Russia launches Sputnik-1

1957 - Russia launches Sputnik-1, this was unexpected and encouraged the US government to make space exploration a priority.

1959: The first meteorological satellite

The <u>first successful</u>
meteorological experiment
conducted from a satellite, was
launched on Explorer VII on <u>13</u>
October 1959. Explorer VII
carried an early version of a
radiometer designed to measure
Earth's heat balance from a
satellite. The architects of the
radiometer were the University
of Wisconsin's Verner E. Suomi
and Robert J. Parent.

First weather satellite TIROS-1


- TIROS-1, first pure weather satellite
- 1964: Nimbus-1, Nimbus weather satellite program begins
- ATS (Applications Technology Satellite), 1966, first geostationary weather satellite
- Afterwards many TIROS, NIMBUS, ESSA, NOAA, GOES, Meteosat etc.

1960: first weather satellite TIROS-1

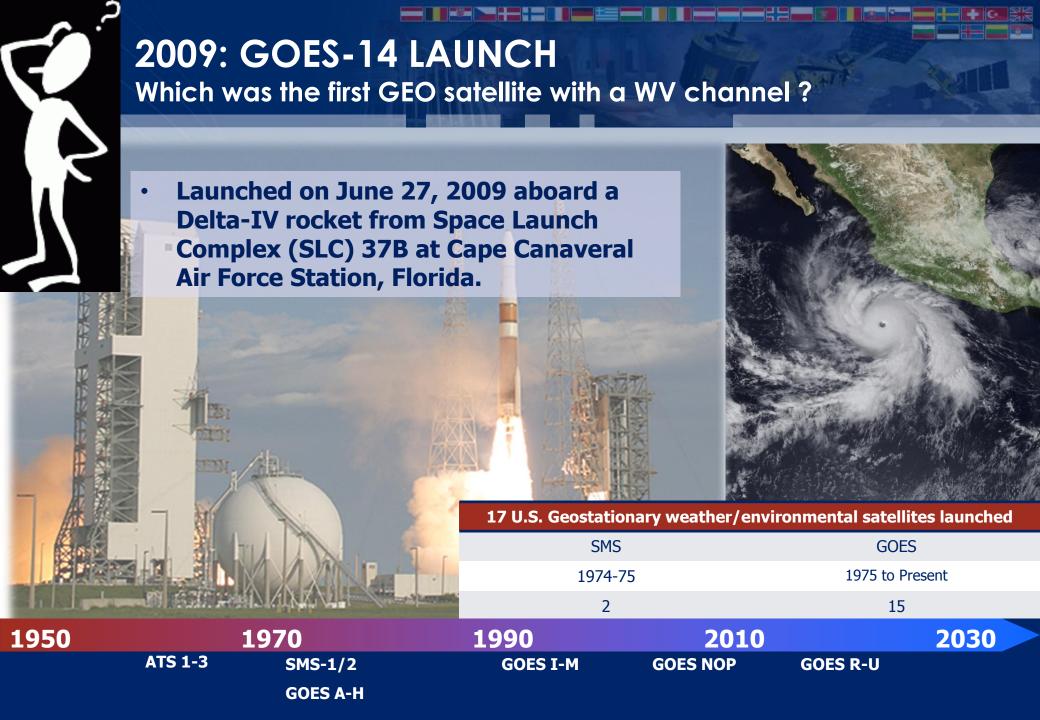

- TIROS-1, 1 April 1960, first pure weather satellite
- 1964: Nimbus-1, Nimbus weather satellite program begins
- ATS (Applications Technology Satellite), 1966, first geostationary weather satellite
- Afterwards many TIROS, NIMBUS, ESSA, NOAA, GOES, Meteosat etc.

TIROS Satellite Model with Suomi Radiometers

EUMETSAT

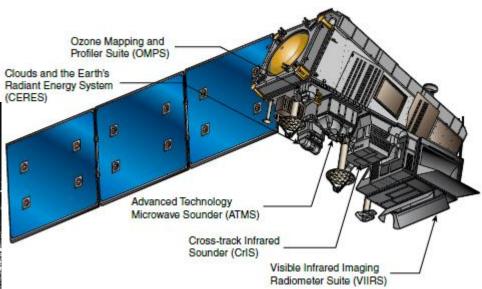
Polar Satellites 1965

First complete view of the world's weather (TIROS-9) Jan 1965 and first satellite in a sun-synchronous orbit!


1950	1970		1990	20	10	2030
	TIROS-1 TIROS-9 NIMBUS	TIROS-N NOAA 1-11 DMSP	NOAA 12-19	COSMIC	NPP NPOESS Jason OSVW	OCO Wind Lidar

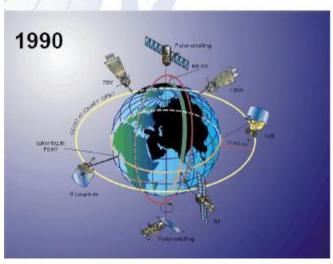
1969: first Russian weather satellite

The Soviet Meteor series of meteorological satellites were introduced in 1969, preceded by three years of flight testing of experimental satellites



2011: Suomi NPP Satellite Launch NPP = National Polar-orbiting Partnership

VIIRS DNB Image (from M. Setvak)



- new instruments, on a new satellite bus, using a new ground data network
- replacement for the NOAA Polar Operational Environmental Satellites



Space-based global observing system: 1961-2009

History of EUMETSAT (ESA) satellites

<u>Meteosat First Generation (first GEO satellite with WV channel)</u>

Meteosat-1:

Meteosat-2: 1981

Meteosat-3: 1988

Meteosat-4: 1989

Meteosat-5: 1991

Meteosat-6: 1993

Meteosat-7: 1997, operational at 57.5E in support of the Indian Ocean Data Coverage Service

History of EUMETSAT satellites

MSG, Metop and Jason

Meteosat-8 (MSG-1): 2002

Meteosat-9 (MSG-2): 2005

Metop-A (Metop-1): 2006

Jason-2: 2008

Meteosat-10 (MSG-3): 2012

Metop-B (Metop-2): 2012

Sentinel-3: 2014

Jason-3: 2015

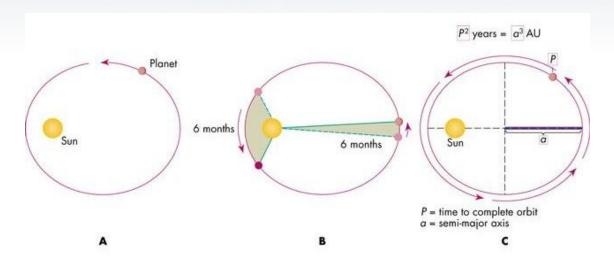
Meteosat-11 (MSG-4): 2015

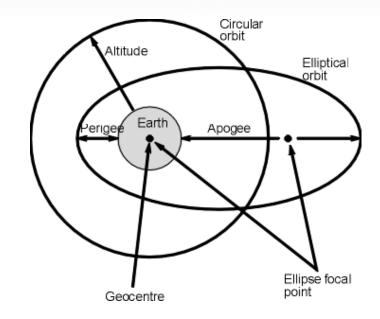
Which other important (meteorological) satellites do you know?

ERS-1: 1991, ERS-2: 1995

Terra: 1999, Aqua: 2002

ENVISAT: 2002


Satellite orbits & elements



Satellite orbits

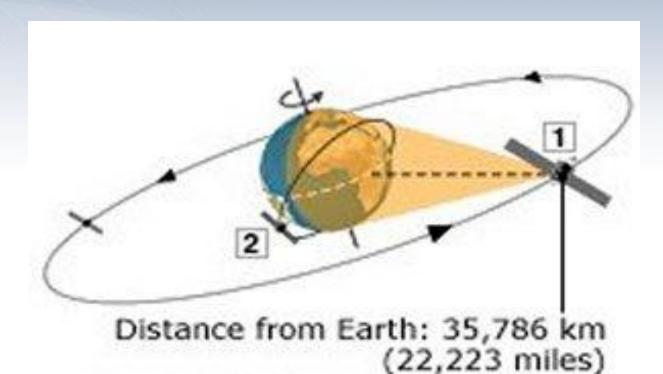
Satellite orbits may be classified by their altitude, inclination and eccentricity

Keppler's Laws

Altitude

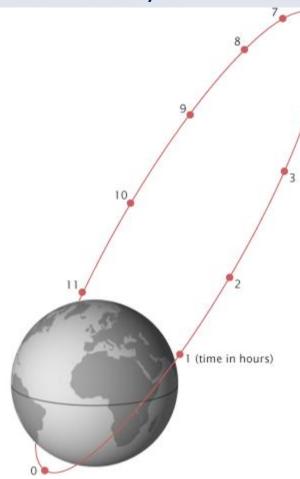
- High Earth Orbit (>35,786 km)
- Geosynchronous Orbit : GEO (35,786 km)
- Medium Earth Orbit (2,000 to 35,786 km)
- Low Earth Orbit : LEO (< 2,000 km)

- The higher the satellite the longer the period of its orbit
- For circular orbit: tangential velocity v = sqrt(Gm_E/r), so v depends only on the altitude of the orbit (not on the satellite's mass)


Inclination

- Inclination 0 degrees : On equator
- Inclination 90 degrees: Directly over pole
- Inclination < 90 degrees prograde orbit
- Inclination > 90 degrees retrograde orbit

Geostationary Orbit : GEO

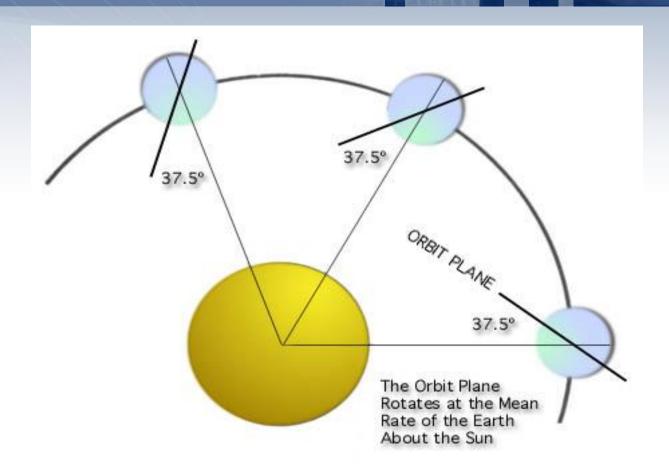

Speed: 11,300 km/h (7,000 mph)

- Inclination 0 degrees : On equator
- Speed: 1 rotation/24 hrs
- Distance to surface ~ 35,786 km

Medium Earth Orbit

Two medium Earth orbits are notable: the semi-synchronous orbit (GPS satellites) and the Molniya orbit

The Molniya orbit combines high inclination (63.4°) with high eccentricity (0.722) to maximize viewing time over high latitudes

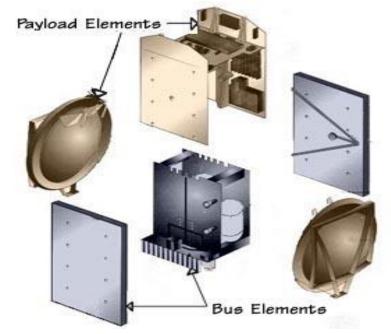


Sun-synchronous Orbit (Low Earth Orbit)

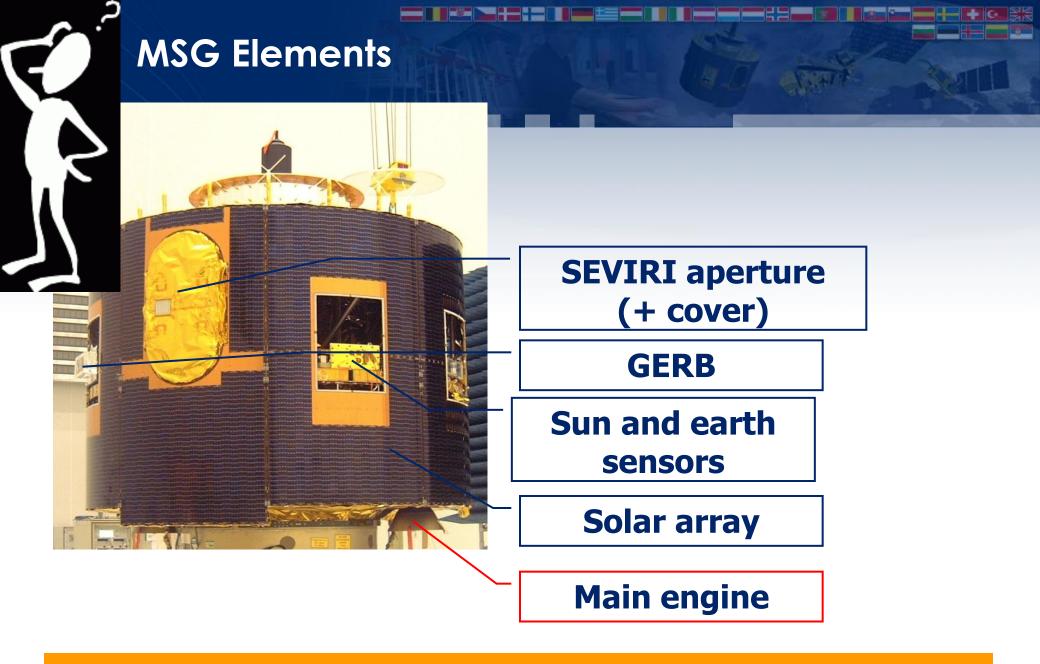
- A Sun-synchronous orbit is a geocentric orbit which combines altitude and inclination in such a way that a satellite on that orbit ascends or descends over any given Earth latitude at the same local mean solar time.
- The surface illumination angle will be nearly the same every time. This consistent lighting is a useful characteristic for satellites that image the Earth's surface in visible or infrared wavelengths.

Sun-synchronous Orbit (Low Earth Orbit)

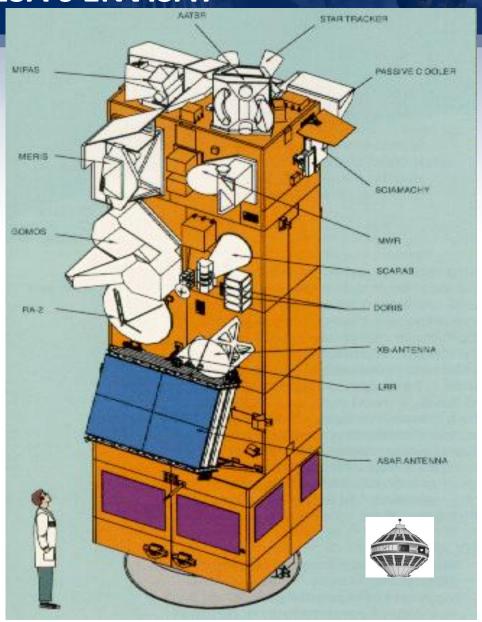
- Inclination slightly retrograde
- Speed: One rotation per 90-100 minutes
- Distance to surface ~ 600-800 km



Satellite Elements


The payload is all the equipment that a satellite needs to do its job. This can include antennas, cameras, radar, and electronics. The payload is different for every satellite. For example, the payload for a weather satellite includes cameras to take pictures of cloud formations, while the payload for a communications satellite includes large antennas to transmit TV or telephone signals to Earth.

The <u>bus</u> is the part of the satellite that carries the payload and all its equipment into space. It holds all the satellite's parts together and provides electrical power, computers, and propulsion to the spacecraft. The bus also contains equipment that allows the satellite to communicate with Earth.



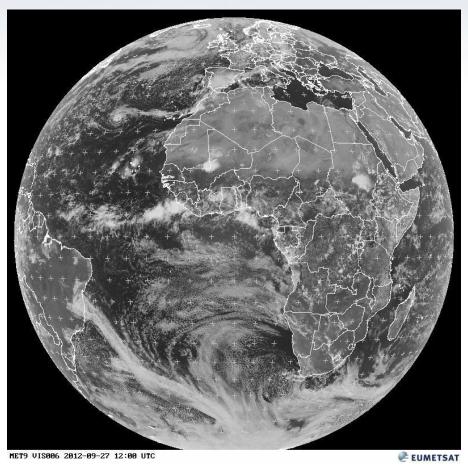
Where is the antenna to transmit the instrument data?

Explorer VII vs ESA's ENVISAT

EUMETSAT's current satellites

Geostationary satellites

Meteosat First Generation (MFG) (Meteosat-7)

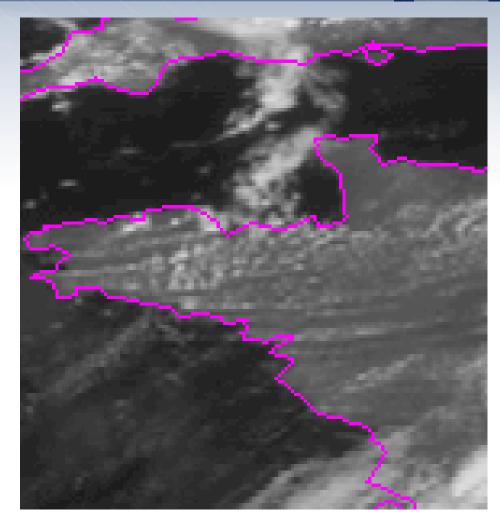


- **▶** Positioned over the Indian Ocean (57.5°E)
- **>3 Spectral Channels (VIS, WV, IR)**
- **≻Images every 30 Minutes**
- **≻Lifetime 1997-2016**

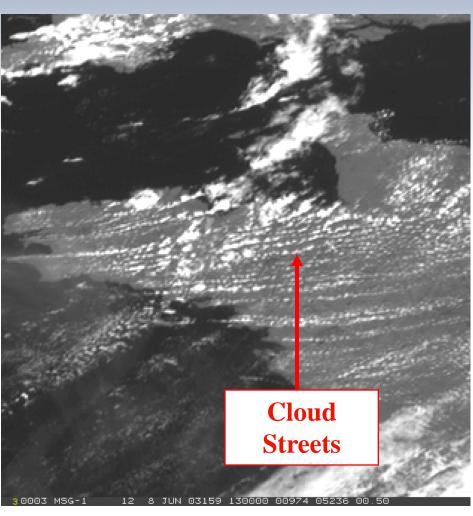
Geostationary satellites

Meteosat Second Generation (MSG) (Meteosat-8, Meteosat-9, Meteosat-10)

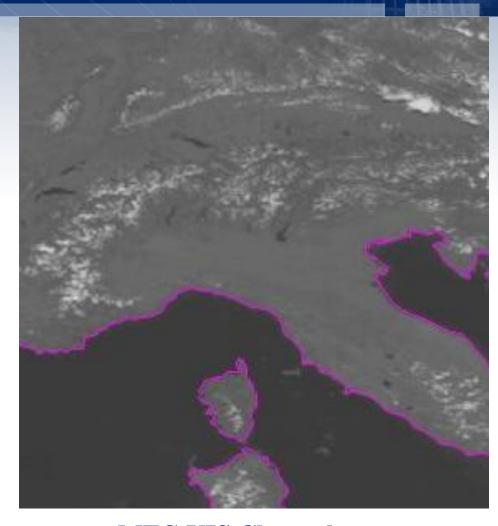
• 12 spectral bands, 3 km horizontal sampling, HRV channel 1 km

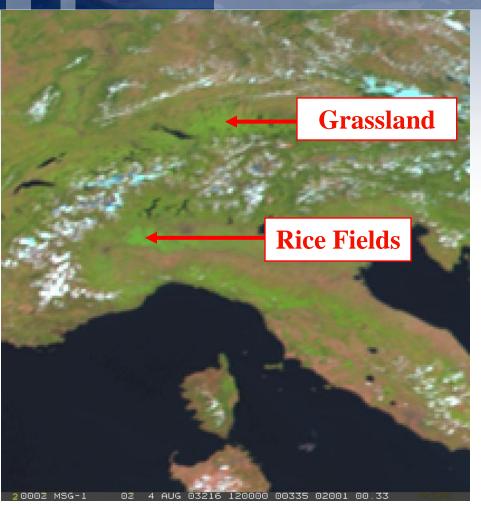


- Meteosat-9
- Positioned over 9.5°E
- Images every 5 minutes (Rapid Scan Service)
 - Meteosat-8
 - Positioned over 3.5°E
 - Backup satellite


- Meteosat-10
- Positioned over 0°E
- Images every 15 minutes

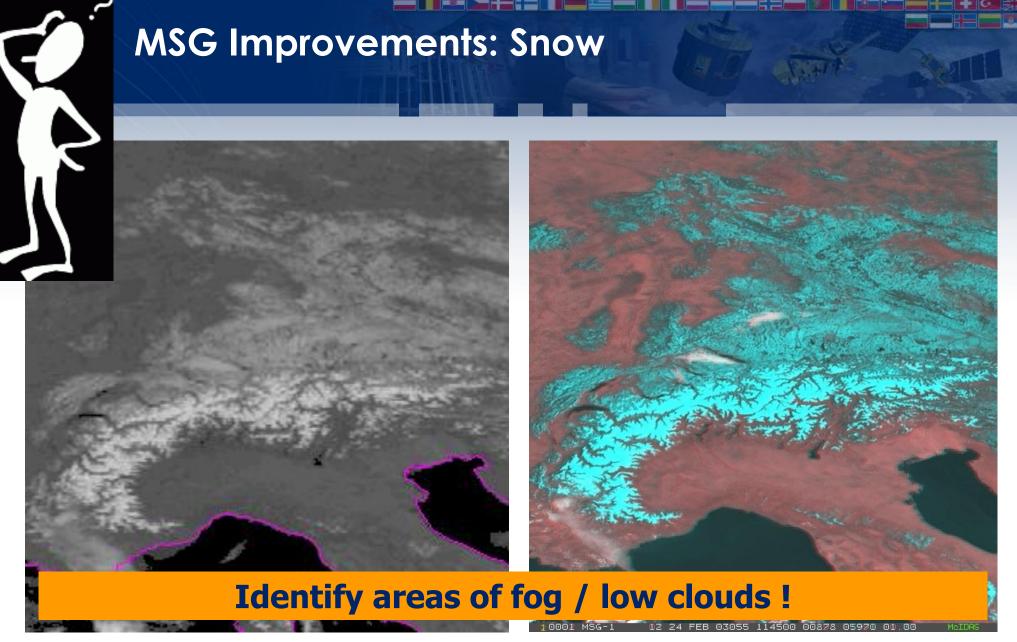
MSG Improvements: HRV (1 km sampling)

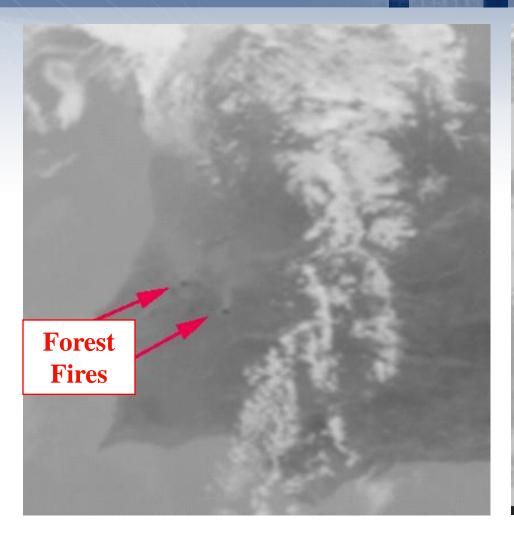


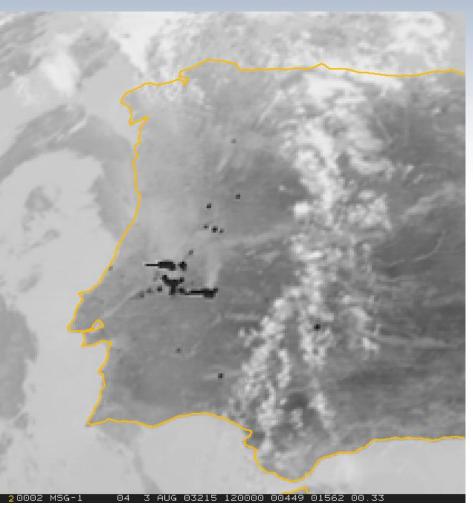

MFG VIS Channel

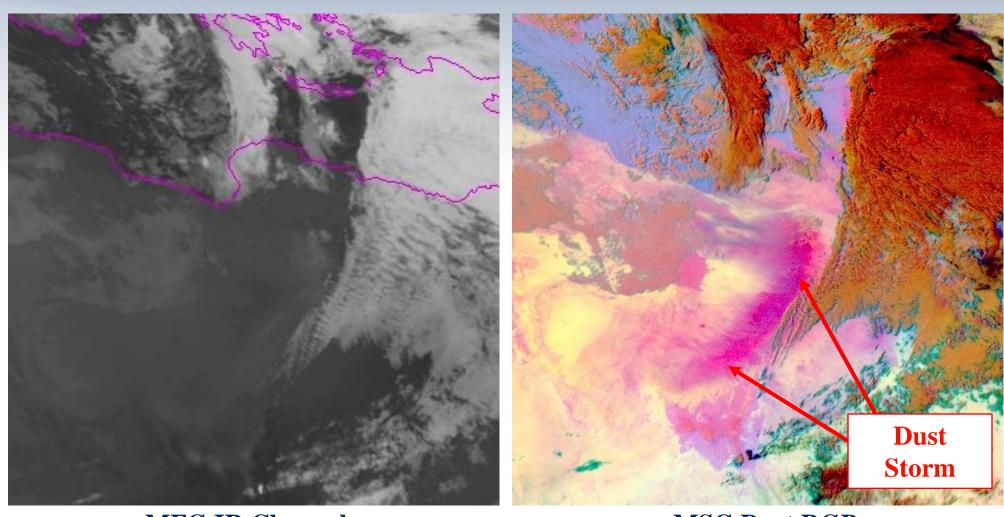
MSG Channel 12 (HRV) EUMETSAT

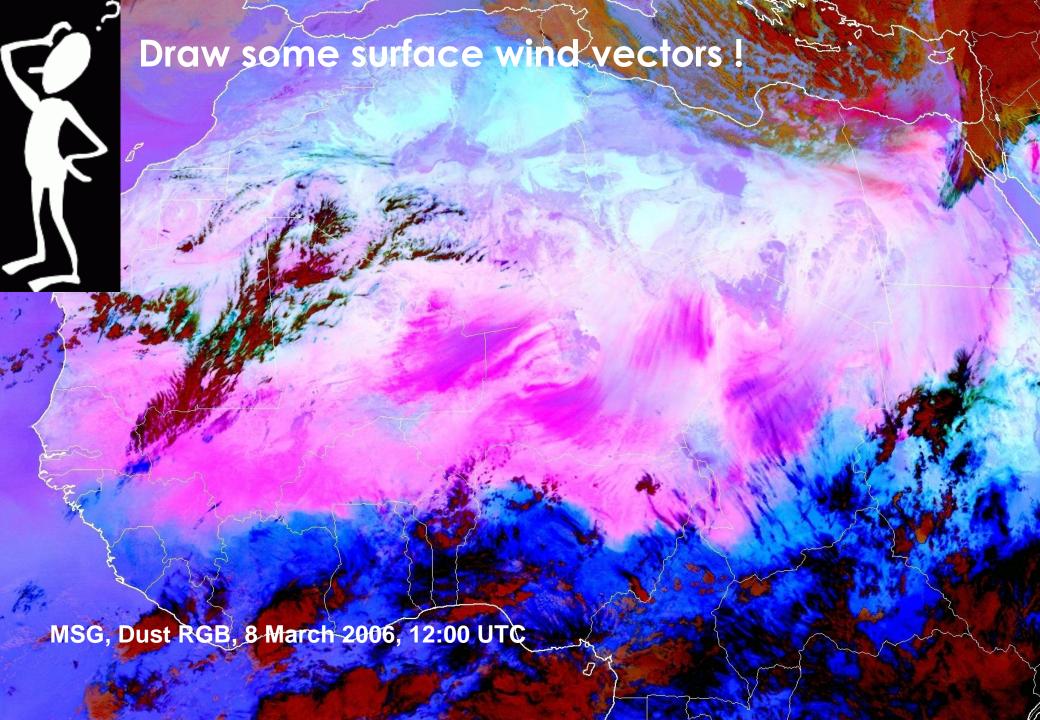
MSG Improvements: Vegetation

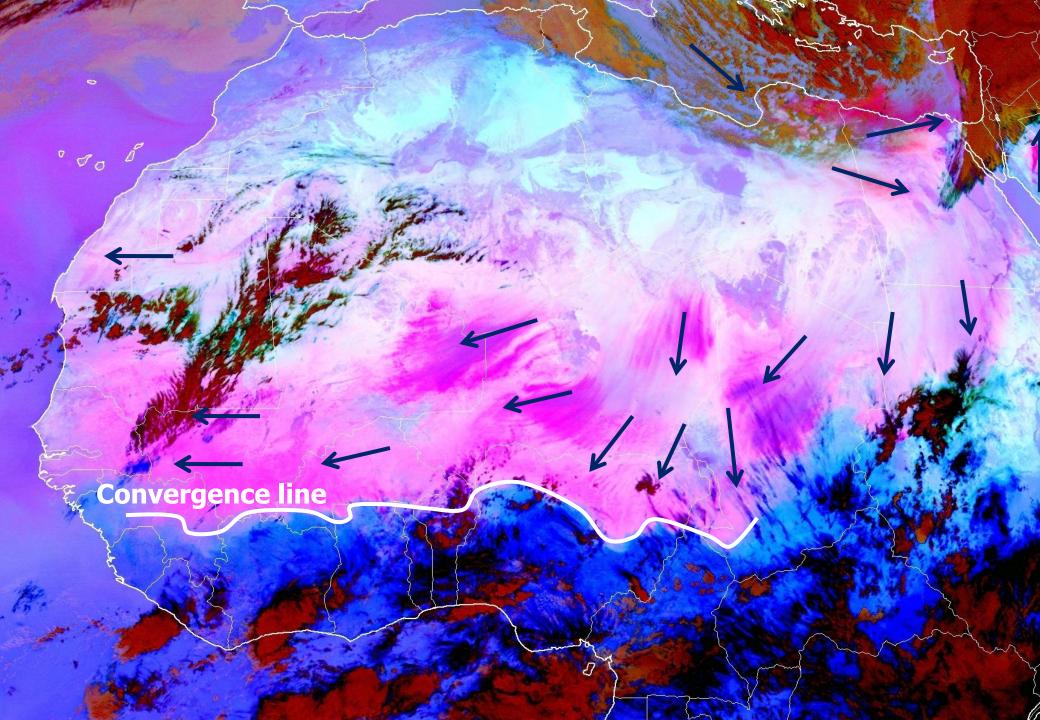



MFG VIS Channel


MSG Natural Colours RGB

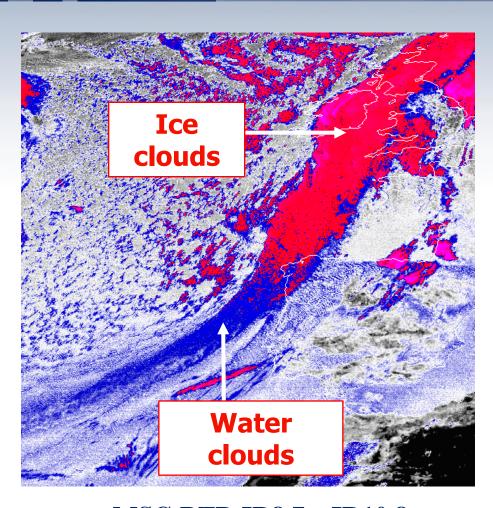

MSG Improvements: Fires


MFG IR Channel

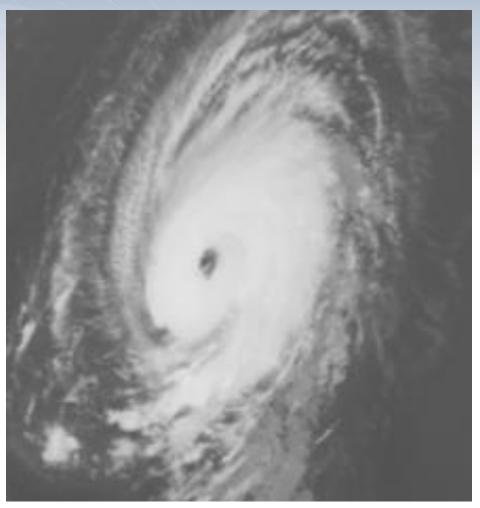

MSG Improvements: Aerosols (Dust, Ash, Smoke)

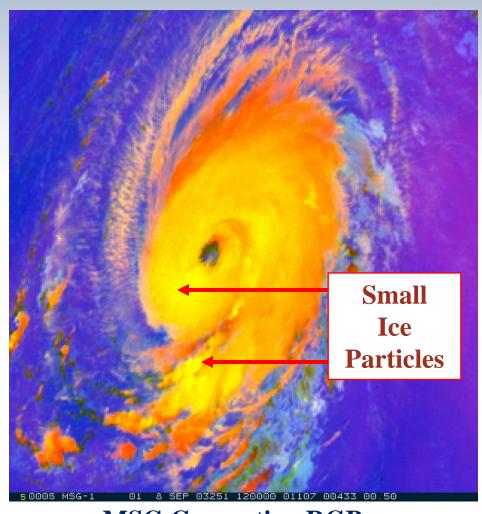
MFG IR Channel

MSG Dust RGB EUMETSAT

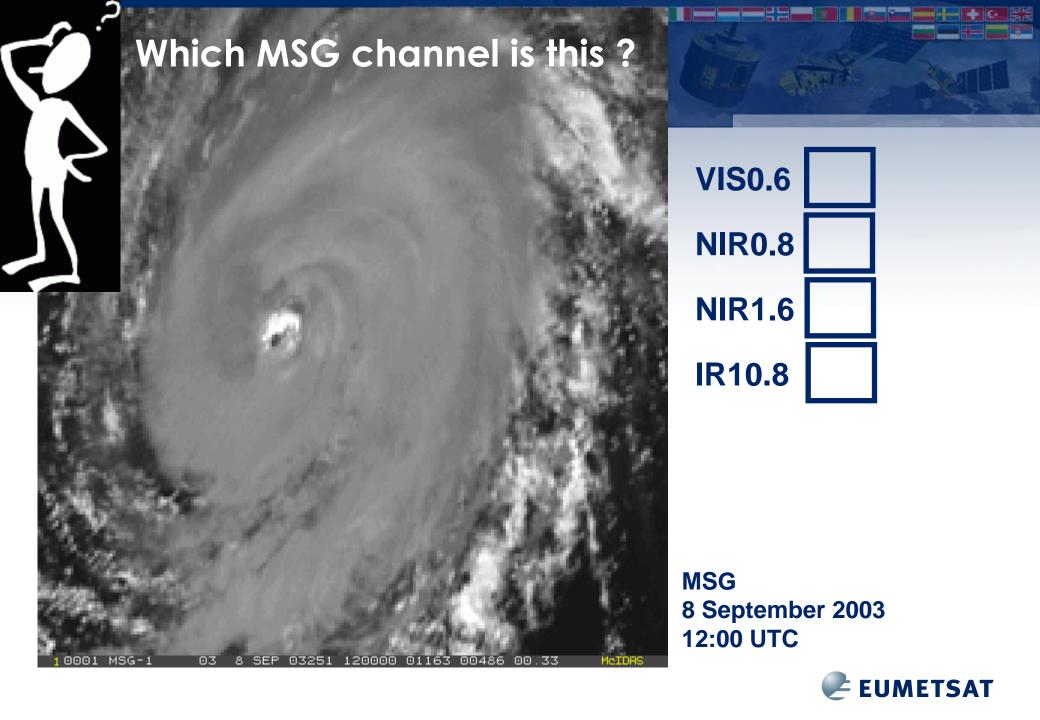


MSG Improvements: Cloud Phase

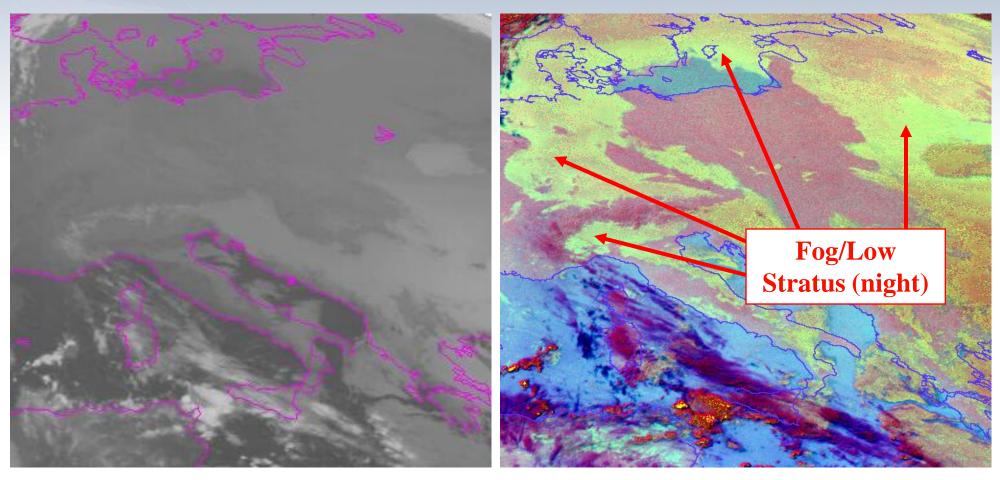

MSG VIS0.8 Channel


MSG BTD IR8.7 – IR10.8

MSG Improvements: Cloud Particle Size

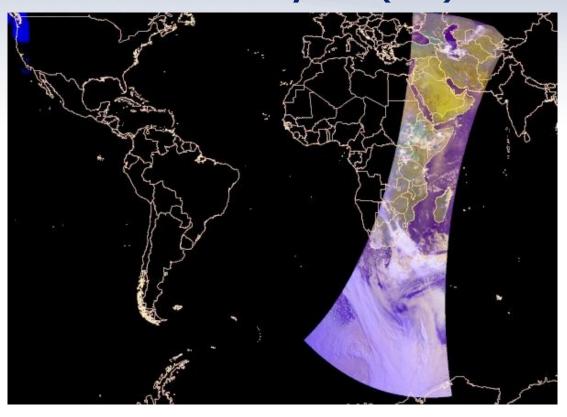


MFG IR Channel



MSG Convection RGB

MSG Improvements: Clouds at Night

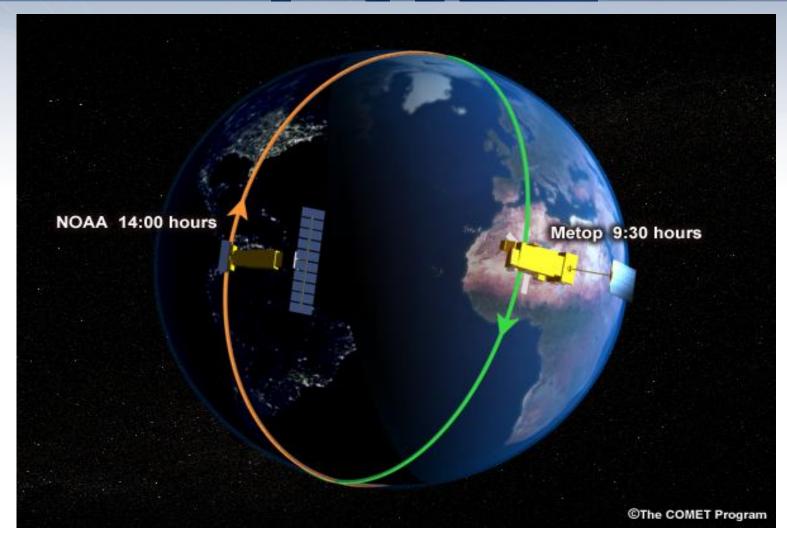

MFG IR Channel

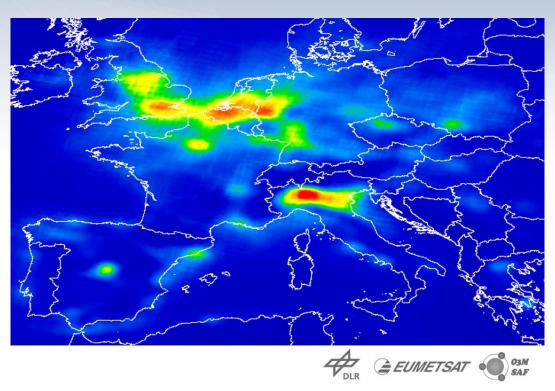
MSG Night Micro RGB

Polar-orbiting satellites

EUMETSAT Polar System (EPS)

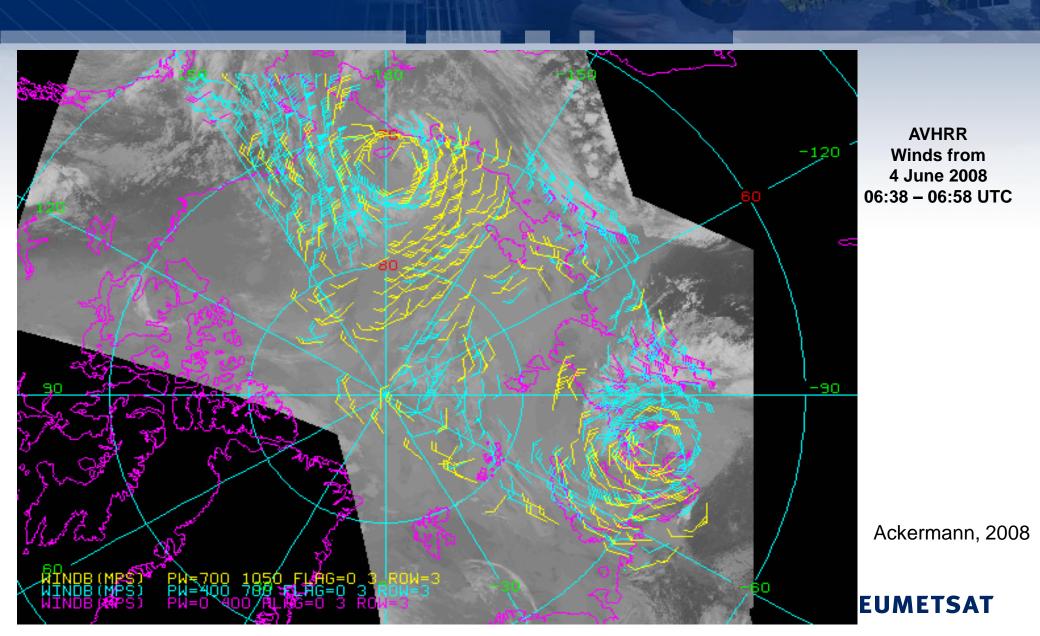
Metop-A (in operation since 2007) Metop-B (in operation since 2013)


- carry imaging and sounding instruments
- direct broadcasting and data collection capabilities


Metop Orbit

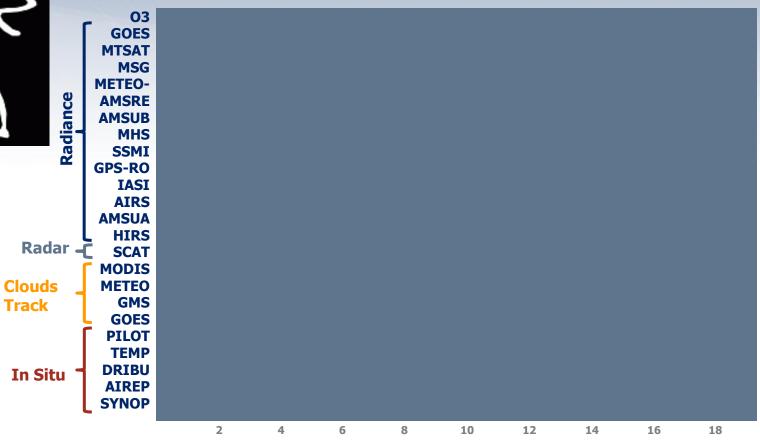
Metop instrument payload **GRAS GOME AVHRR IASI ASCAT AMSU-A1 HIRS MHS AMSU-A2 EUMETSAT**

Metop Improvements: trace gases – atmospheric pollution (e.g. NO2)



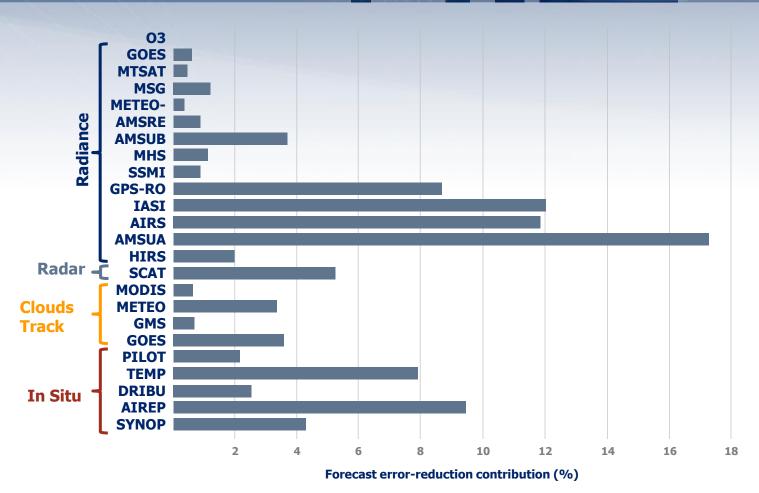
Tropospheric NO₂ over Europe (from GOME-2)

Source: DLR / Ozone SAF



Metop Improvements: winds above polar regions

Instrument contribution to Numerical Weather Prediction error-reduction

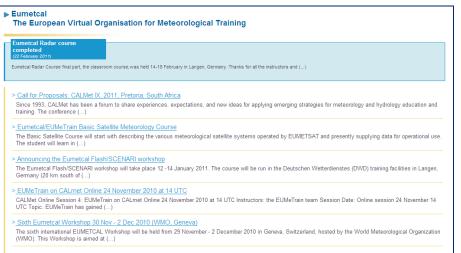

Forecast error-reduction contribution (%)

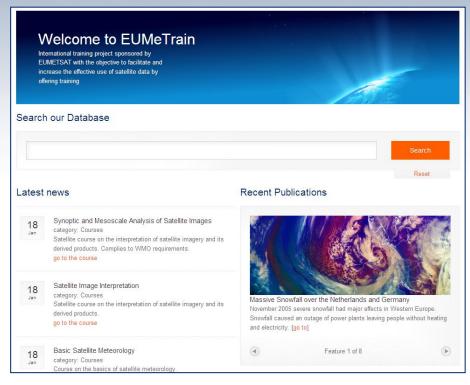
Forecast sensitivity to observations

24-hour forecast error-reduction contribution (%) of the components (types) of the observing system during September – December 2008. **(Source: ECMWF)**

Which instruments have the largest contributions?

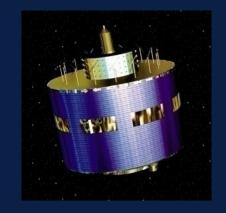
Instrument contribution to Numerical Weather Prediction error-reduction


Forecast sensitivity to observations


24-hour forecast error-reduction contribution (%) of the components (types) of the observing system during September – December 2008. **(Source: ECMWF)**

Have a look at the online training libraries

www.eumetrain.org


THANK YOU!

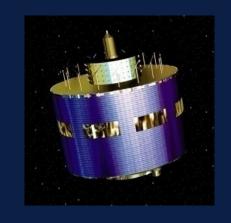
Extra slides (from Martin Setvak)

Meteosat Second Generation (MSG) <u>SEVIRI</u> bands Spinning Enhanced Visible and Infrared Imager

•	Band 12 HRV	0.4 - 1.1 μm	
·	Band 11 IR 13.4	12.40 - 14.40 μm	
•	Band 10 IR 12.0	11.00 - 13.00 μm	
•	Band 09 IR 10.8	9.80 - 11.80 μm	
•	Band 08 IR 9.7	9.38 - 9.94 μm	
•	Band 07 IR 8.7	8.30 - 9.10 μm	
•	Band 06 WV 7.3	6.85 - 7.85 μm	
	Band 05 WV 6.2	5.35 - 7.15 μm	
Ŀ	Band 04 IR 3.9	3.48 - 4.36 µm	
	Pand 04 ID 2 0	2.49 4.26	
•	Band 03 NIR 1.6	1.50 - 1.78 μm	
•	Band 02 VIS 0.8	0.74 - 0.88 µm	
•	Band 01 VIS 0.6	0.56 - 0.71 µm	
	- 104 VIIO 0 4		

Reflected (backscattered) solar radiance

Thermal emission


Reflected (backscattered) solar radiance

Meteosat Second Generation (MSG) SEVIRI bands

Spinning Enhanced Visible and Infrared Imager

Pixel size (at nadir): 3 km (bands 1-11), and 1 km (HRV)

Operational sampling every 15 minutes, full globe (except for HRV, and 5-min rapid scan – geographical subsets only).

•	Band 01 VIS 0.6	0.56 - 0.71 μm
•	Band 02 VIS 0.8	0.74 - 0.88 μm
•	Band 03 NIR 1.6	1.50 - 1.78 μm
•	Band 04 IR 3.9	3.48 - 4.36 μm
	Band 05 WV 6.2	5.35 - 7.15 μm
	Band 06 WV 7.3	6.85 - 7.85 μm
	Band 07 IR 8.7	8.30 - 9.10 μm
	Band 08 IR 9.7	9.38 - 9.94 um

Band 09 IR 10.8 9.80 - 11.80 μm Band 10 IR 12.0 11.00 - 13.00 µm Band 11 IR 13.4 12.40 - 14.40 μm Band 12 HRV **0.4 - 1.1** μm

Visible and near-IR bands

Microphysical bands

Absorption bands

IR window bands

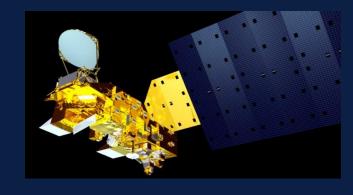
Advanced Very High Resolution Radiometer

NOAA POES (NOAA 15 - NOAA 19) satellites EUMETSAT Metop satellites

Pixel size (nadir resolution): 1100 m; swath width ~ 3000 km

channel 1	0.58 - 0.7 μm	VIS	VIS 0.6	
channel 2	0.7 - 1.0 μm	NIR	VIS 0.8	
channel 3A	1.58 - 1.64 µm	NIR	NIR 1.6	
channel 3B	3.5 - 4.0 μm	NIR	IR 3.9	
channel 4	10.2 - 11.5 μm	IR	IR 10.8	
channel 5	11.4 - 12.5 μm	IR	IR 12.0	

Reflected (backscattered) solar radiance


Thermal emission

- used since 1978 (TIROS-N), presently 3rd generation ... AVHRR/3

Moderate Resolution Imaging Spectrometer

NASA EOS satellites Terra (1999) and Aqua (2002)

Reflected (backscattered) solar bands

Band	Bandwidth	Central Wavelength	Pixel Size	
1	0.620 - 0.670 μm	0.6455 μm	250 m	
2	0.841 - 0.876 μm	0.8565 μm	250 m	
3	0.459 - 0.479 μm	0.4656 μm	500 m	
4	0.545 - 0.565 μm	0.5536 μm	500 m	
5	1.230 - 1.250 µm	1.2416 µm	500 m	
6	1.628 - 1.652 µm	1.6291 µm	500 m	
7	2.105 - 2.155 µm	2.1141 µm	500 m	
8	0.405 - 0.420 μm	0.4113 μm	1000 m	
9	0.438 - 0.448 µm	0.4420 μm	1000 m	
10	0.483 - 0.493 μm	0.4869 μm	1000 m	
11	0.526 - 0.536 μm	0.5296 μm	1000 m	
12	0.546 - 0.556 μm	0.5468 μm	1000 m	
13	0.662 - 0.672 μm	0.6655 μm	1000 m	
14	0.673 - 0.683 μm	0.6768 μm	1000 m	
15	0.743 - 0.753 μm	0.7464 μm	1000 m	
16	0.862 - 0.877 μm	0.8662 μm	1000 m	
17	0.890 - 0.920 μm	0.9040 μm	1000 m	
18	0.931 - 0.941 μm	0.9355 μm	1000 m	
19	0.915 - 0.965 μm	0.9352 μm	1000 m	

Solar (20-26) and emission (20-25) bands

Band	Bandwidth	Central Wavelength	Pixel Size	
20	3.660 - 3.840	3.785 µm	1000 m	
21	3.930 - 3.989	3.960 µm	1000 m	
22	3.930 - 3.989	3.960 µm	1000 m	
23	4.020 - 4.080	4.056 μm	1000 m	
24	4.433 - 4.498	4.472 μm	1000 m	
25	4.482 - 4.549	4.545 μm	1000 m	
26	1.360 - 1.390	1.383 µm	1000 m	
27	6.535 - 6.895	6.752 μm	1000 m	
28	7.175 - 7.475	7.334 µm	1000 m	
29	8.400 - 8.700	8.518 µm	1000 m	
30	9.580 - 9.880	9.737 μm	1000 m	
31	10.780 - 11.280	11.017 μm	1000 m	
32	11.770 - 12.270	12.032 μm	1000 m	
33	13.185 - 13.485	13.359 µm	1000 m	
34	13.485 - 13.785	13.675 μm	1000 m	
35	13.785 - 14.085	13.907 μm	1000 m	
36	14.085 - 14.385	14.192 µm	1000 m	

Thermal emission only bands (27-36)

Moderate Resolution Imaging Spectrometer

Pixel size (nadir resolution): 250 m, 500 m and 1000 m; swath width 2330 km

VIS 0.6

VIS 0.8

NIR 1.6

VIS 0.6

VIS 0.8

Corresponding MSG SEVIRI bands

Band	Bandwidth	Central Wavelength	Pixel Size	
1	0.620 - 0.670 μm	0.6455 μm	250 m	
2	0.841 - 0.876 μm	0.8565 μm	250 m	
3	0.459 - 0.479 μm	0.4656 μm	500 m	
4	0.545 - 0.565 μm	0.5536 μm	500 m	
5	1.230 - 1.250 µm	1.2416 µm	500 m	
6	1.628 - 1.652 µm	1.6291 µm	500 m	
7	2.105 - 2.155 µm	2.1141 µm	500 m	
8	0.405 - 0.420 μm	0.4113 μm	1000 m	
9	0.438 - 0.448 μm	0.4420 μm	1000 m	
10	0.483 - 0.493 μm	0.4869 μm	1000 m	
11	0.526 - 0.536 μm	0.5296 μm	1000 m	
12	0.546 - 0.556 μm	0.5468 μm	1000 m	
13	0.662 - 0.672 μm	0.6655 μm	1000 m	
14	0.673 - 0.683 μm	0.6768 μm	1000 m	
15	0.743 - 0.753 μm	0.7464 μm	1000 m	
16	0.862 - 0.877 μm	0.8662 μm	1000 m	
17	0.890 - 0.920 µm	0.9040 μm	1000 m	
18	0.931 - 0.941 µm	0.9355 μm	1000 m	
19	0.915 - 0.965 μm	0.9352 μm	1000 m	

Band	Bandwidth	Central Wavelength		
20	3.660 - 3.840	3.785 µm		
21	3.930 - 3.989	3.960 µm		
22	3.930 - 3.989	3.960 µm		
23	4.020 - 4.080	4.056 µm		
24	4.433 - 4.498	4.472 μm		
25	4.482 - 4.549	4.545 μm		
26	1.360 - 1.390	1.383 µm		
27	6.535 - 6.895	6.752 µm		
28	7.175 - 7.475	7.334 µm		
29	8.400 - 8.700	8.518 µm		
30	9.580 - 9.880	9.737 µm		
31	10.780 - 11.280	11.017 µm		
32	11.770 - 12.270	12.032 µm		
33	13.185 - 13.485	13.359 µm		
34	13.485 - 13.785	13.675 µm		
35	13.785 - 14.085	13.907 µm		
36	14.085 - 14.385	14.192 μm		

Pixel Size

1000 m

IR 3.9

WV 6.2 WV 7.3 IR 8.7 IR 9.7 IR 10.8 IR 12.0

.	_			_	
HZ.		Π.	Γ.	rj	
'/			ı,	T.	5)

	No.	Wave-	· ·	ple Interval		Radi-	I I typ or I		Signal to Noise Ratio (dimensionless)		
		length	(km Downtrack	(x Crosstrack)	Driving EDRs	ance	Ttyp	,	NEΔT (Kelvi	*	
		(µm)	Nadir	End of Scan		Range		Required	Predicted	Margin	
1	M1	0.412	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	44.9	352	483	37%	
					Aerosols	High	155	316	827	162%	
	M2	0.445	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	40	380	501	32%	
					Aerosols	High	146	409	774	89%	
FPA	M3	0.488	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	32	416	573	38%	
FPA	<u> </u>				Aerosols	High	123	414	747	80%	
12/2	M4	0.555	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	21	362	482	33%	
NR N					Aerosols	High	90	315	586	86%	
		0.640	0.371 x 0.387	0.80 x 0.789	Imagery	Single	22	119	135	13%	
VIS/	M5	0.672	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	10	242	306	26%	
O.					Aerosols	High	68	360	450	25%	
	M6	0.746	0.742 x 0.776	1.60 x 1.58	Atmospheric Corr'n	Single	9.6	199	279	40%	
	12	0.865	0.371 x 0.387	0.80 x 0.789	NDVI	Single	25	150	212	41%	
	M7	0.865	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	6.4	215	467	117%	
					Aerosols	High	33.4	340	467	37%	
CCD	DNB	0.7	0.742 x 0.742	0.742 x 0.742	Imagery	Var.	6.70E-05	6	6.2	3%	
	M8	1.24	0.742 x 0.776	1.60 x 1.58	Cloud Particle Size	Single	5.4	74	109	47%	
l le	M9	1.378	0.742 x 0.776	1.60 x 1.58	Cirrus/Cloud Cover	Single	6	83	156	88%	
HCT	13	1.61	0.371 x 0.387	0.80 x 0.789	Binary Snow Map	Single	7.3	6.0	71	1084%	
S/MWIR	- M440	1.61	0.742 x 0.776	1.60 x 1.58	Snow Fraction	Single	7.3	342	461	35%	
≷ ₹		2.25	0.742 x 0.776	1.60 x 1.58	Clouds	Single	0.12	10	14	44%	
S/MW HaCaT	G 14	3.74	0.371 x 0.387	0.80 x 0.789	Imagery Clouds	Single	270 K	2.500	0.236	68%	
	M12	3.70	0.742 x 0.776	1.60 x 1.58	SST	Single	270 K	0.396	1.039	141%	
	M13	4.05	0.742 x 0.259	1.60 x 1.58	SST	Low	300 K	0.107	0.051	111%	
					Fires	High	380 K	0.423	0.353	20%	
	M14	8.55	0.742 x 0.776	1.60 x 1.58	Cloud Top Properties	Single	270 K	0.091	0.057	60%	
A L		10.763	0.742×0.776	1.60 x 1.58	SST	Single	300 K	0.070	0.034	105%	
< -	1 1/-	11.450	0.371 x 0.387	0.80 x 0.789	Cloud Imagery	Single	210 K	1.500	1.004	49%	
	M16	12.013	0.742 x 0.776	1.60 x 1.58	SST	Single	300 K	0.072	0.059	23%	

Swath width: 3000 km (± 56° from nadir)